University of New South Wales and Data61
The Singularity May Never Be Near
Walsh, Toby (University of New South Wales and Data61)
There is both much optimisim and pessimism around artificial intelligence (AI) today. The optimists are investing millions of dollars, and even in some cases billions of dollars into AI. The pessimists, on the other hand, predict that AI will end many things: jobs, warfare, and even the human race. Both the optimists and the pessimists often appeal to the idea of a technological singularity, a point in time where machine intelligence starts to run away, and a new, more in- telligent “species” starts to inhabit the earth. If the optimists are right, this will be a moment that fundamentally changes our economy and our society. If the pessimists are right, this will be a moment that also fundamentally changes our economy and our society. It is therefore very worthwhile spending some time deciding if either of them might be right.
Ethical Considerations in Artificial Intelligence Courses
Burton, Emanuelle (University of Kentucky) | Goldsmith, Judy (University of Kentucky) | Koenig, Sven (University of Southern California) | Kuipers, Benjamin (University of Michigan) | Mattei, Nicholas (IBM Research) | Walsh, Toby (University of New South Wales and Data61)
Ethical Considerations in Artificial Intelligence Courses
Burton, Emanuelle (University of Kentucky) | Goldsmith, Judy (University of Kentucky) | Koenig, Sven (University of Southern California) | Kuipers, Benjamin (University of Michigan) | Mattei, Nicholas (IBM Research) | Walsh, Toby (University of New South Wales and Data61)
The recent surge in interest in ethics in artificial intelligence may leave many educators wondering how to address moral, ethical, and philosophical issues in their AI courses. As instructors we want to develop curriculum that not only prepares students to be artificial intelligence practitioners, but also to understand the moral, ethical, and philosophical impacts that artificial intelligence will have on society. In this article we provide practical case studies and links to resources for use by AI educators. We also provide concrete suggestions on how to integrate AI ethics into a general artificial intelligence course and how to teach a stand-alone artificial intelligence ethics course.
The Meta-Turing Test
Walsh, Toby (University of New South Wales and Data61)
We propose an alternative to the Turing test that removes the inherent asymmetry between humans and machines in Turing’s original imitation game. In this new test, both humans and machines judge each other. We argue that this makes the test more robust against simple deceptions. We also propose a small number of refinements to improve further the test. These refinements could be applied also to Turing’s original imitation game.
Reports of the 2016 AAAI Workshop Program
Albrecht, Stefano (The University of Texas at Austin) | Bouchard, Bruno (Université du Québec à Chicoutimi) | Brownstein, John S. (Harvard University) | Buckeridge, David L. (McGill University) | Caragea, Cornelia (University of North Texas) | Carter, Kevin M. (MIT Lincoln Laboratory) | Darwiche, Adnan (University of California, Los Angeles) | Fortuna, Blaz (Bloomberg L.P. and Jozef Stefan Institute) | Francillette, Yannick (Université du Québec à Chicoutimi) | Gaboury, Sébastien (Université du Québec à Chicoutimi) | Giles, C. Lee (Pennsylvania State University) | Grobelnik, Marko (Jozef Stefan Institute) | Hruschka, Estevam R. (Federal University of São Carlos) | Kephart, Jeffrey O. (IBM Thomas J. Watson Research Center) | Kordjamshidi, Parisa (University of Illinois at Urbana-Champaign) | Lisy, Viliam (University of Alberta) | Magazzeni, Daniele (King's College London) | Marques-Silva, Joao (University of Lisbon) | Marquis, Pierre (Université d'Artois) | Martinez, David (MIT Lincoln Laboratory) | Michalowski, Martin (Adventium Labs) | Shaban-Nejad, Arash (University of California, Berkeley) | Noorian, Zeinab (Ryerson University) | Pontelli, Enrico (New Mexico State University) | Rogers, Alex (University of Oxford) | Rosenthal, Stephanie (Carnegie Mellon University) | Roth, Dan (University of Illinois at Urbana-Champaign) | Sinha, Arunesh (University of Southern California) | Streilein, William (MIT Lincoln Laboratory) | Thiebaux, Sylvie (The Australian National University) | Tran, Son Cao (New Mexico State University) | Wallace, Byron C. (University of Texas at Austin) | Walsh, Toby (University of New South Wales and Data61) | Witbrock, Michael (Lucid AI) | Zhang, Jie (Nanyang Technological University)
The Workshop Program of the Association for the Advancement of Artificial Intelligence's Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) was held at the beginning of the conference, February 12-13, 2016. Workshop participants met and discussed issues with a selected focus -- providing an informal setting for active exchange among researchers, developers and users on topics of current interest. To foster interaction and exchange of ideas, the workshops were kept small, with 25-65 participants. Attendance was sometimes limited to active participants only, but most workshops also allowed general registration by other interested individuals.
Reports of the 2016 AAAI Workshop Program
Albrecht, Stefano (The University of Texas at Austin) | Bouchard, Bruno (Université du Québec à Chicoutimi) | Brownstein, John S. (Harvard University) | Buckeridge, David L. (McGill University) | Caragea, Cornelia (University of North Texas) | Carter, Kevin M. (MIT Lincoln Laboratory) | Darwiche, Adnan (University of California, Los Angeles) | Fortuna, Blaz (Bloomberg L.P. and Jozef Stefan Institute) | Francillette, Yannick (Université du Québec à Chicoutimi) | Gaboury, Sébastien (Université du Québec à Chicoutimi) | Giles, C. Lee (Pennsylvania State University) | Grobelnik, Marko (Jozef Stefan Institute) | Hruschka, Estevam R. (Federal University of São Carlos) | Kephart, Jeffrey O. (IBM Thomas J. Watson Research Center) | Kordjamshidi, Parisa (University of Illinois at Urbana-Champaign) | Lisy, Viliam (University of Alberta) | Magazzeni, Daniele (King's College London) | Marques-Silva, Joao (University of Lisbon) | Marquis, Pierre (Université d'Artois) | Martinez, David (MIT Lincoln Laboratory) | Michalowski, Martin (Adventium Labs) | Shaban-Nejad, Arash (University of California, Berkeley) | Noorian, Zeinab (Ryerson University) | Pontelli, Enrico (New Mexico State University) | Rogers, Alex (University of Oxford) | Rosenthal, Stephanie (Carnegie Mellon University) | Roth, Dan (University of Illinois at Urbana-Champaign) | Sinha, Arunesh (University of Southern California) | Streilein, William (MIT Lincoln Laboratory) | Thiebaux, Sylvie (The Australian National University) | Tran, Son Cao (New Mexico State University) | Wallace, Byron C. (University of Texas at Austin) | Walsh, Toby (University of New South Wales and Data61) | Witbrock, Michael (Lucid AI) | Zhang, Jie (Nanyang Technological University)
The Workshop Program of the Association for the Advancement of Artificial Intelligence’s Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) was held at the beginning of the conference, February 12-13, 2016. Workshop participants met and discussed issues with a selected focus — providing an informal setting for active exchange among researchers, developers and users on topics of current interest. To foster interaction and exchange of ideas, the workshops were kept small, with 25-65 participants. Attendance was sometimes limited to active participants only, but most workshops also allowed general registration by other interested individuals. The AAAI-16 Workshops were an excellent forum for exploring emerging approaches and task areas, for bridging the gaps between AI and other fields or between subfields of AI, for elucidating the results of exploratory research, or for critiquing existing approaches. The fifteen workshops held at AAAI-16 were Artificial Intelligence Applied to Assistive Technologies and Smart Environments (WS-16-01), AI, Ethics, and Society (WS-16-02), Artificial Intelligence for Cyber Security (WS-16-03), Artificial Intelligence for Smart Grids and Smart Buildings (WS-16-04), Beyond NP (WS-16-05), Computer Poker and Imperfect Information Games (WS-16-06), Declarative Learning Based Programming (WS-16-07), Expanding the Boundaries of Health Informatics Using AI (WS-16-08), Incentives and Trust in Electronic Communities (WS-16-09), Knowledge Extraction from Text (WS-16-10), Multiagent Interaction without Prior Coordination (WS-16-11), Planning for Hybrid Systems (WS-16-12), Scholarly Big Data: AI Perspectives, Challenges, and Ideas (WS-16-13), Symbiotic Cognitive Systems (WS-16-14), and World Wide Web and Population Health Intelligence (WS-16-15).