Goto

Collaborating Authors

 University of Massachusetts


Automated Data Cleansing through Meta-Learning

AAAI Conferences

Data preprocessing or cleansing is one of the biggest hurdles in industry for developing successful machine learning applications.  The process of data cleansing includes data imputation, feature normalization & selection, dimensionality reduction, and data balancing applications.  Currently such preprocessing is manual.  One approach for automating this process is meta -learning.  In this paper, we experiment with state of the art meta-learning methodologies and identify the inadequacies and research challenges for solving such a problem.


Reports on the 2015 AAAI Spring Symposium Series

AI Magazine

The AAAI 2015 Spring Symposium Series was held Monday through Wednesday, March 23-25, at Stanford University near Palo Alto, California. The titles of the seven symposia were Ambient Intelligence for Health and Cognitive Enhancement, Applied Computational Game Theory, Foundations of Autonomy and Its (Cyber) Threats: From Individuals to Interdependence, Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches, Logical Formalizations of Commonsense Reasoning, Socio-Technical Behavior Mining: From Data to Decisions, Structured Data for Humanitarian Technologies: Perfect Fit or Overkill?


Reports on the 2015 AAAI Spring Symposium Series

AI Magazine

The AAAI 2015 Spring Symposium Series was held Monday through Wednesday, March 23-25, at Stanford University near Palo Alto, California. The titles of the seven symposia were Ambient Intelligence for Health and Cognitive Enhancement, Applied Computational Game Theory, Foundations of Autonomy and Its (Cyber) Threats: From Individuals to Interdependence, Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches, Logical Formalizations of Commonsense Reasoning, Socio-Technical Behavior Mining: From Data to Decisions, Structured Data for Humanitarian Technologies: Perfect Fit or Overkill? and Turn-Taking and Coordination in Human-Machine Interaction.The highlights of each symposium are presented in this report.


Manifold Alignment Preserving Global Geometry

AAAI Conferences

This paper proposes a novel algorithm for manifold alignment preserving global geometry. This approach constructs mapping functions that project data instances from different input domains to a new lower-dimensional space, simultaneously matching the instances in correspondence and preserving global distances between instances within the original domains. In contrast to previous approaches, which are largely based on preserving local geometry, the proposed approach is suited to applications where the global manifold geometry needs to be respected. We evaluate the effectiveness of our algorithm for transfer learning in two real-world cross-lingual information retrieval tasks.


Qualitative Planning under Partial Observability in Multi-Agent Domains

AAAI Conferences

Decentralized POMDPs (Dec-POMDPs) provide a rich, attractive model for planning under uncertainty and partial observability in cooperative multi-agent domains with a growing body of research. In this paper we formulate a qualitative, propositional model for multi-agent planning under uncertainty with partial observability, which we call Qualitative Dec-POMDP (QDec-POMDP). We show that the worst-case complexity of planning in QDec-POMDPs is similar to that of Dec-POMDPs. Still, because the model is more “classical” in nature, it is more compact and easier to specify. Furthermore, it eases the adaptation of methods used in classical and contingent planning to solve problems that challenge current Dec-POMDPs solvers. In particular, in this paper we describe a method based on compilation to classical planning, which handles multi-agent planning problems significantly larger than those handled by current Dec-POMDP algorithms.


Multiscale Manifold Learning

AAAI Conferences

Many high-dimensional data sets that lie on a low-dimensional manifold exhibit nontrivial regularities at multiple scales. Most work in manifold learning ignores this multiscale structure. In this paper, we propose approaches to explore the deep structure of manifolds. The proposed approaches are based on the diffusion wavelets framework, data driven, and able to directly process directional neighborhood relationships without ad-hoc symmetrization. The proposed multiscale algorithms are evaluated using both synthetic and real-world data sets, and shown to outperform previous manifold learning methods.


Lagrangian Relaxation Techniques for Scalable Spatial Conservation Planning

AAAI Conferences

We address the problem of spatial conservation planning in which the goal is to maximize the expected spread of cascades of an endangered species by strategically purchasing land parcels within a given budget. This problem can be solved by standard integer programming methods using the sample average approximation (SAA) scheme. Our main contribution lies in exploiting the separable structure present in this problem and using Lagrangian relaxation techniques to gain scalability over the flat representation. We also generalize the approach to allow the application of the SAA scheme to a range of stochastic optimization problems. Our iterative approach is highly efficient in terms of space requirements and it provides an upper bound over the optimal solution at each iteration. We apply our approach to the Red-cockaded Woodpecker conservation problem. The results show that it can find the optimal solution significantly faster---sometimes by an order-of-magnitude---than using the flat representation for a range of budget sizes.


Compressing POMDPs Using Locality Preserving Non-Negative Matrix Factorization

AAAI Conferences

Partially Observable Markov Decision Processes (POMDPs) are a well-established and rigorous framework for sequential decision-making under uncertainty. POMDPs are well-known to be intractable to solve exactly, and there has been significant work on finding tractable approximation methods. One well-studied approach is to find a compression of the original POMDP by projecting the belief states to a lower-dimensional space. We present a novel dimensionality reduction method for POMDPs based on locality preserving non-negative matrix factorization. Unlike previous approaches, such as Krylov compression and regular non-negative matrix factorization, our approach preserves the local geometry of the belief space manifold. We present results on standard benchmark POMDPs showing improved performance over previously explored compression algorithms for POMDPs.


Robotics: Science and Systems IV

AI Magazine

Funding for the conference was provided by the National Science Foundation, the Naval Research Laboratory, ABB, Microsoft Research, Microsoft Robotics, Evolution Robotics, Willow Garage, and Intel. Springer sponsored the best student paper award. The meeting brought together more than 280 researchers from Europe, Asia, North America, and Australia. He showed how molecular motors exploit for the technical program. Twenty of the accepted thermal noise to achieve energy efficiency and papers were presented orally; the remaining 20 talked about the implications for building artificial were presented as posters.


An Ensemble Learning and Problem Solving Architecture for Airspace Management

AAAI Conferences

In this paper we describe the application of a novel learning and problem solving architecture to the domain of airspace management, where multiple requests for the use of airspace need to be reconciled and managed automatically. The key feature of our "Generalized Integrated Learning Architecture" (GILA) is a set of integrated learning and reasoning (ILR) systems coordinated by a central meta-reasoning executive (MRE). Each ILR learns independently from the same training example and contributes to problem-solving in concert with other ILRs as directed by the MRE. Formal evaluations show that our system performs as well as or better than humans after learning from the same training data. Further, GILA outperforms any individual ILR run in isolation, thus demonstrating the power of the ensemble architecture for learning and problem solving.