Goto

Collaborating Authors

 University of California at Berkeley



Reports on the 2017 AAAI Spring Symposium Series

AI Magazine

It is also important to remember that having a very sharp distinction of AI A rise in real-world applications of AI has stimulated for social good research is not always feasible, and significant interest from the public, media, and policy often unnecessary. While there has been significant makers. Along with this increasing attention has progress, there still exist many major challenges facing come a media-fueled concern about purported negative the design of effective AIbased approaches to deal consequences of AI, which often overlooks the with the difficulties in real-world domains. One of the societal benefits that AI is delivering and can deliver challenges is interpretability since most algorithms for in the near future. To address these concerns, the AI for social good problems need to be used by human symposium on Artificial Intelligence for the Social end users. Second, the lack of access to valuable data Good (AISOC-17) highlighted the benefits that AI can that could be crucial to the development of appropriate bring to society right now. It brought together AI algorithms is yet another challenge. Third, the researchers and researchers, practitioners, experts, data that we get from the real world is often noisy and and policy makers from a wide variety of domains.


Compute Less to Get More: Using ORC to Improve Sparse Filtering

AAAI Conferences

Sparse Filtering is a popular feature learning algorithm for image classification pipelines. In this paper, we connect the performance of Sparse Filtering with spectral properties of the corresponding feature matrices. This connection provides new insights into Sparse Filtering; in particular, it suggests early stopping of Sparse Filtering. We therefore introduce the Optimal Roundness Criterion (ORC), a novel stopping criterion for Sparse Filtering. We show that this stopping criterion is related with pre-processing procedures such as Statistical Whitening and demonstrate that it can make image classification with Sparse Filtering considerably faster and more accurate.


Energy Disaggregation via Learning Powerlets and Sparse Coding

AAAI Conferences

In this paper, we consider the problem of energy disaggregation, i.e., decomposing a whole home electricity signal into its component appliances. We propose a new supervised algorithm, which in the learning stage, automatically extracts signature consumption patterns of each device by modeling the device as a mixture of dynamical systems. In order to extract signature consumption patterns of a device corresponding to its different modes of operation, we define appropriate dissimilarities between energy snippets of the device and use them in a subset selection scheme, which we generalize to deal with time-series data. We then form a dictionary that consists of extracted power signatures across all devices. We cast the disaggregation problem as an optimization over a representation in the learned dictionary and incorporate several novel priors such as device-sparsity, knowledge about devices that do or do not work together as well as temporal consistency of the disaggregated solution. Real experiments on a publicly available energy dataset demonstrate that our proposed algorithm achieves promising results for energy disaggregation.


Supporting STEM Learning With Gaming Technologies: Principles For Effective Design

AAAI Conferences

In this paper, methods and models for the design of educational interventions and usable systems are presented and synthesized. The purpose is to suplliment the design process with educational considerations and discern design principles for the development of serious STEM games. This synthesis can contribute to the design of the next generation of technologically enhanced learning environments.