Goto

Collaborating Authors

 Masdar Institute of Science and Technology


Axiomatic Characterization of Game-Theoretic Network Centralities

AAAI Conferences

One of the fundamental research challenges in network science is the centrality analysis, i.e., identifying the nodes that play the most important roles in the network. In this paper, we focus on the game-theoretic approach to centrality analysis. While various centrality indices have been proposed based on this approach, it is still unknown what distinguishes this family of indices from the more classical ones. In this paper, we answer this question by providing the first axiomatic characterization of game-theoretic centralities. Specifically, we show that every centrality can be obtained following the game-theoretic approach, and show that two natural classes of game-theoretic centrality can be characterized by two intuitive properties pertaining to Myerson's notion of Fairness.


Using the Shapley Value to Analyze Algorithm Portfolios

AAAI Conferences

Algorithms for NP-complete problems often have different strengths andweaknesses, and thus algorithm portfolios often outperform individualalgorithms. It is surprisingly difficult to quantify a component algorithm's contributionto such a portfolio. Reporting a component's standalone performance wronglyrewards near-clones while penalizing algorithms that have small but distinctareas of strength. Measuring a component's marginal contribution to an existingportfolio is better, but penalizes sets of strongly correlated algorithms,thereby obscuring situations in which it is essential to have at least onealgorithm from such a set. This paper argues for analyzing component algorithmcontributions via a measure drawn from coalitional game theory---the Shapleyvalue---and yields insight into a research community's progress over time. Weconclude with an application of the analysis we advocate to SAT competitions,yielding novel insights into the behaviour of algorithm portfolios, theircomponents, and the state of SAT solving technology.


An Empirical Study on the Practical Impact of Prior Beliefs over Policy Types

AAAI Conferences

Many multiagent applications require an agent to learn quickly how to interact with previously unknown other agents. To address this problem, researchers have studied learning algorithms which compute posterior beliefs over a hypothesised set of policies, based on the observed actions of the other agents. The posterior belief is complemented by the prior belief, which specifies the subjective likelihood of policies before any actions are observed. In this paper, we present the first comprehensive empirical study on the practical impact of prior beliefs over policies in repeated interactions. We show that prior beliefs can have a significant impact on the long-term performance of such methods, and that the magnitude of the impact depends on the depth of the planning horizon. Moreover, our results demonstrate that automatic methods can be used to compute prior beliefs with consistent performance effects. This indicates that prior beliefs could be eliminated as a manual parameter and instead be computed automatically.


E-HBA: Using Action Policies for Expert Advice and Agent Typification

AAAI Conferences

Past research has studied two approaches to utilise pre-defined policy sets in repeated interactions: as experts, to dictate our own actions, and as types, to characterise the behaviour of other agents. In this work, we bring these complementary views together in the form of a novel meta-algorithm, called Expert-HBA (E-HBA), which can be applied to any expert algorithm that considers the average (or total) payoff an expert has yielded in the past. E-HBA gradually mixes the past payoff with a predicted future payoff, which is computed using the type-based characterisation. We present results from a comprehensive set of repeated matrix games, comparing the performance of several well-known expert algorithms with and without the aid of E-HBA. Our results show that E-HBA has the potential to significantly improve the performance of expert algorithms.


Online Learning in Repeated Human-Robot Interactions

AAAI Conferences

Adaptation is a critical component of collaboration. Nevertheless, online learning is not yet used in most successful human-robot interactions, especially when the human's and robot's goals are not fully aligned. There are at least two barriers to the successful application of online learning in HRI. First, typical machine-learning algorithms do not learn at time scales that support effective interactions with people. Algorithms that learn at sufficiently fast time scales often produce myopic strategies that do not lead to good long-term collaborations. Second, random exploration, a core component of most online-learning algorithms, can be problematic for developing collaborative relationships with a human partner. We anticipate that a new genre of online-learning algorithms can overcome these two barriers when paired with (cheap-talk) communication. In this paper, we overview our efforts in these two areas to produce a situation-independent, learning system that quickly learns to collaborate with a human partner.



Learning in Repeated Games with Minimal Information: The Effects of Learning Bias

AAAI Conferences

Automated agents for electricity markets, social networks, and other distributed networks must repeatedly interact with other intelligent agents, often without observing associates' actions or payoffs (i.e., minimal information). Given this reality, our goal is to create algorithms that learn effectively in repeated games played with minimal information. As in other applications of machine learning, the success of a learning algorithm in repeated games depends on its learning bias. To better understand what learning biases are most successful, we analyze the learning biases of previously published multi-agent learning (MAL) algorithms. We then describe a new algorithm that adapts a successful learning bias from the literature to minimal information environments. Finally, we compare the performance of this algorithm with ten other algorithms in repeated games played with minimal information.