Intel
Scheduling in Visual Fog Computing: NP-Completeness and Practical Efficient Solutions
Chu, Hong-Min (National Taiwan University) | Yang, Shao-Wen (Intel) | Pillai, Padmanabhan (Intel) | Chen, Yen-Kuang (Intel)
The visual fog paradigm envisions tens of thousands of heterogeneous, camera-enabled edge devices distributed across the Internet, providing live sensing for a myriad of different visual processing applications. The scale, computational demands, and bandwidth needed for visual computing pipelines necessitates offloading intelligently to distributed computing infrastructure, including the cloud, Internet gateway devices, and the edge devices themselves. This paper focuses on the visual fog scheduling problem of assigning the visual computing tasks to various devices to optimize network utilization. We first prove this problem is NP-complete, and then formulate a practical, efficient solution. We demonstrate sub-minute computation time to optimally schedule 20,000 tasks across over 7,000 devices, and just 7-minute execution time to place 60,000 tasks across 20,000 devices, showing our approach is ready to meet the scale challenges introduced by visual fog.
Compressing POMDPs Using Locality Preserving Non-Negative Matrix Factorization
Theocharous, Georgios (Intel) | Mahadevan, Sridhar (University of Massachusetts)
Partially Observable Markov Decision Processes (POMDPs) are a well-established and rigorous framework for sequential decision-making under uncertainty. POMDPs are well-known to be intractable to solve exactly, and there has been significant work on finding tractable approximation methods. One well-studied approach is to find a compression of the original POMDP by projecting the belief states to a lower-dimensional space. We present a novel dimensionality reduction method for POMDPs based on locality preserving non-negative matrix factorization. Unlike previous approaches, such as Krylov compression and regular non-negative matrix factorization, our approach preserves the local geometry of the belief space manifold. We present results on standard benchmark POMDPs showing improved performance over previously explored compression algorithms for POMDPs.