Goto

Collaborating Authors

 Institute of Computing Technology, Chinese Academy of Sciences


Elastic Responding Machine for Dialog Generation with Dynamically Mechanism Selecting

AAAI Conferences

Neural models aiming at generating meaningful and diverse response is attracting increasing attention over recent years. For a given post, the conventional encoder-decoder models tend to learn high-frequency but trivial responses, or are difficult to determine which speaking styles are suitable to generate responses. To address this issue, we propose the elastic responding machine (ERM), which is based on a proposed encoder-diverter-filter-decoder framework. ERM models the multiple responding mechanisms to not only generate acceptable responses for a given post but also improve the diversity of responses. Here, the mechanisms could be regraded as some latent variables, and for a given post different responses may be generated by different mechanisms. The experiments demonstrate the quality and diversity of the generated responses, intuitively show how the learned model controls response mechanism when responding, and reveal some underlying relationship between mechanism and language style.


Path-Based Attention Neural Model for Fine-Grained Entity Typing

AAAI Conferences

Fine-grained entity typing aims to assign entity mentions in the free text with types arranged in a hierarchical structure. It suffers from the label noise in training data generated by distant supervision. Although recent studies use many features to prune wrong label ahead of training, they suffer from error propagation and bring much complexity. In this paper, we propose an end-to-end typing model, called the path-based attention neural model (PAN), to learn a noise-robust performance by leveraging the hierarchical structure of types. Experiments on two data sets demonstrate its effectiveness.


Exploiting Emotion on Reviews for Recommender Systems

AAAI Conferences

Review history is widely used by recommender systems to infer users' preferences and help find the potential interests from the huge volumes of data, whereas it also brings in great concerns on the sparsity and cold-start problems due to its inadequacy. Psychology and sociology research has shown that emotion information is a strong indicator for users' preferences. Meanwhile, with the fast development of online services, users are willing to express their emotion on others' reviews, which makes the emotion information pervasively available. Besides, recent research shows that the number of emotion on reviews is always much larger than the number of reviews. Therefore incorporating emotion on reviews may help to alleviate the data sparsity and cold-start problems for recommender systems. In this paper, we provide a principled and mathematical way to exploit both positive and negative emotion on reviews, and propose a novel framework MIRROR, exploiting eMotIon on Reviews for RecOmmendeR systems from both global and local perspectives. Empirical results on real-world datasets demonstrate the effectiveness of our proposed framework and further experiments are conducted to understand how emotion on reviews works for the proposed framework.


Tree-Structured Neural Machine for Linguistics-Aware Sentence Generation

AAAI Conferences

Different from other sequential data, sentences in natural language are structured by linguistic grammars. Previous generative conversational models with chain-structured decoder ignore this structure in human language and might generate plausible responses with less satisfactory relevance and fluency. In this study, we aim to incorporate the results from linguistic analysis into the process of sentence generation for high-quality conversation generation. Specifically, we use a dependency parser to transform each response sentence into a dependency tree and construct a training corpus of sentence-tree pairs. A tree-structured decoder is developed to learn the mapping from a sentence to its tree, where different types of hidden states are used to depict the local dependencies from an internal tree node to its children. For training acceleration, we propose a tree canonicalization method, which transforms trees into equivalent ternary trees. Then, with a proposed tree-structured search method, the model is able to generate the most probable responses in the form of dependency trees, which are finally flattened into sequences as the system output. Experimental results demonstrate that the proposed X2Tree framework outperforms baseline methods over 11.15% increase of acceptance ratio.


Visual Relationship Detection With Deep Structural Ranking

AAAI Conferences

Visual relationship detection aims to describe the interactions between pairs of objects. Different from individual object learning tasks, the number of possible relationships are much larger, which makes it hard to explore only based on the visual appearance of objects. In addition, due to the limited human effort, the annotations for visual relationships are usually incomplete which increases the difficulty of model training and evaluation. In this paper, we propose a novel framework, called Deep Structural Ranking, for visual relationship detection. To complement the representation ability of visual appearance, we integrate multiple cues for predicting the relationships contained in an input image. Moreover, we design a new ranking objective function by enforcing the annotated relationships to have higher relevance scores. Unlike previous works, our proposed method can both facilitate the co-occurrence of relationships and mitigate the incompleteness problem. Experimental results show that our proposed method outperforms the state-of-the-art on the two widely used datasets. We also demonstrate its superiority in detecting zero-shot relationships.


Zero-Shot Learning With Attribute Selection

AAAI Conferences

Zero-shot learning (ZSL) is regarded as an effective way to construct classification models for target classes which have no labeled samples available. The basic framework is to transfer knowledge from (different) auxiliary source classes having sufficient labeled samples with some attributes shared by target and source classes as bridge. Attributes play an important role in ZSL but they have not gained sufficient attention in recent years. Previous works mostly assume attributes are perfect and treat each attribute equally. However, as shown in this paper, different attributes have different properties, such as their class distribution, variance, and entropy, which may have considerable impact on ZSL accuracy if treated equally. Based on this observation, in this paper we propose to use a subset of attributes, instead of the whole set, for building ZSL models. The attribute selection is conducted by considering the information amount and predictability under a novel joint optimization framework. To our knowledge, this is the first work that notices the influence of attributes themselves and proposes to use a refined attribute set for ZSL. Since our approach focuses on selecting good attributes for ZSL, it can be combined to any attribute based ZSL approaches so as to augment their performance. Experiments on four ZSL benchmarks demonstrate that our approach can improve zero-shot classification accuracy and yield state-of-the-art results.


Personalized Privacy-Preserving Social Recommendation

AAAI Conferences

Privacy leakage is an important issue for social recommendation. Existing privacy preserving social recommendation approaches usually allow the recommender to fully control users' information. This may be problematic since the recommender itself may be untrusted, leading to serious privacy leakage. Besides, building social relationships requires sharing interests as well as other private information, which may lead to more privacy leakage. Although sometimes users are allowed to hide their sensitive private data using privacy settings, the data being shared can still be abused by the adversaries to infer sensitive private information. Supporting social recommendation with least privacy leakage to untrusted recommender and other users (i.e., friends) is an important yet challenging problem. In this paper, we aim to address the problem of achieving privacy-preserving social recommendation under personalized privacy settings. We propose PrivSR, a novel framework for privacy-preserving social recommendation, in which users can model ratings and social relationships privately. Meanwhile, by allocating different noise magnitudes to personalized sensitive and non-sensitive ratings, we can protect users' privacy against the untrusted recommender and friends. Theoretical analysis and experimental evaluation on real-world datasets demonstrate that our framework can protect users' privacy while being able to retain effectiveness of the underlying recommender system.


Dynamic Pricing for Reusable Resources in Competitive Market With Stochastic Demand

AAAI Conferences

The market for selling reusable products (e.g., car rental, cloud services and network access resources) is growing rapidly over the last few years, where service providers maximize their revenues through setting optimal prices. While there has been lots of research on pricing optimization, existing works often ignore dynamic property of demand and the competition among providers. Thus, existing pricing solutions might be far from optimal in realistic markets. This paper provides the first study of service providers' dynamic pricing in consideration of market competition and makes three key contributions along this line. First, we propose a comprehensive model that takes into account the dynamic demand and interaction among providers, and formulate the optimal pricing policy in the competitive market as an equilibrium. Second, we propose an approximate Nash equilibrium to describe providers' behaviors, and design an efficient algorithm to compute the equilibrium which is guaranteed to converge. Third, we derive many properties of the model without any further constraints on demand functions, which can reduce the search space of policies in the algorithm. Finally, we conduct extensive experiments with different parameter settings, showing that the approximate equilibrium is very close to the Nash equilibrium and our proposed pricing policy outperforms existing strategies.


Mesh-Based Autoencoders for Localized Deformation Component Analysis

AAAI Conferences

Spatially localized deformation components are very useful for shape analysis and synthesis in 3D geometry processing. Several methods have recently been developed, with an aim to extract intuitive and interpretable deformation components. However, these techniques suffer from fundamental limitations especially for meshes with noise or large-scale deformations, and may not always be able to identify important deformation components.In this paper we propose a novel mesh-based autoencoder architecture that is able to cope with meshes with irregular topology. We introduce sparse regularization in this framework, which along with convolutional operations, helps localize deformations.Our framework is capable of extracting localized deformation components from mesh data sets with large-scale deformations and is robust to noise. It also provides a nonlinear approach to reconstruction of meshes using the extracted basis, which is more effective than the current linear combination approach. Extensive experiments show that our method outperforms state-of-the-art methods in both qualitative and quantitative evaluations.


Learning Knowledge Representation Across Knowledge Graphs

AAAI Conferences

Distributed knowledge representation learning (KRL) methods encode both entities and relations in knowledge graphs (KG) in a lower-dimensional semantic space, which model relatively dense knowledge graphs well and greatly improve the performance of knowledge graph completion and knowledge reasoning. However, existing KRL methods including Trans(E, H, R, D and Sparse) hardly obtain comparative performances on sparse KGs where most of entities and relations have very low frequencies. Furthermore, all existing methods target at KRL on one knowledge graph independently. The embeddings of different KGs are independent with each other. In this paper, we propose a novel cross-knowledge-graph (cross-KG) KRL method which learns embeddings for two different KGs simultaneously. Through projecting semantic related entities and relations in two KGs to a uniform semantic space, our method could learn better embeddings for sparse KGs by incorporating information from another relatively larger and denser KG. The learned embeddings are also helpful for downstream cross-KGs or cross-linguals tasks like ontology alignment. The experiment results show that our method could significantly outperform corresponding baseline methods on knowledge graph completion on single KG and cross-KG entity prediction and mapping tasks.