IBM Thomas J. Watson Research Center
Early Prediction of Diabetes Complications from Electronic Health Records: A Multi-Task Survival Analysis Approach
Liu, Bin (IBM Thomas J. Watson Research Center) | Li, Ying (IBM Thomas J. Watson Research Center) | Sun, Zhaonan (IBM Thomas J. Watson Research Center) | Ghosh, Soumya (IBM Thomas J. Watson Research Center) | Ng, Kenney (IBM Thomas J. Watson Research Center)
Type 2 diabetes mellitus (T2DM) is a chronic disease that usually results in multiple complications. Early identification of individuals at risk for complications after being diagnosed with T2DM is of significant clinical value. In this paper, we present a new data-driven predictive approach to predict when a patient will develop complications after the initial T2DM diagnosis. We propose a novel survival analysis method to model the time-to-event of T2DM complications designed to simultaneously achieve two important metrics: 1) accurate prediction of event times, and 2) good ranking of the relative risks of two patients. Moreover, to better capture the correlations of time-to-events of the multiple complications, we further develop a multi-task version of the survival model. To assess the performance of these approaches, we perform extensive experiments on patient level data extracted from a large electronic health record claims database. The results show that our new proposed survival analysis approach consistently outperforms traditional survival models and demonstrate the effectiveness of the multi-task framework over modeling each complication independently.
A Cognitive Assistant for Visualizing and Analyzing Exoplanets
Kephart, Jeffrey O. (IBM Thomas J. Watson Research Center) | Dibia, Victor C. (IBM Thomas J. Watson Research Center) | Ellis, Jason (IBM Thomas J. Watson Research Center) | Srivastava, Biplav (IBM Thomas J. Watson Research Center) | Talamadupula, Kartik (IBM Thomas J. Watson Research Center) | Dholakia, Mishal (IBM Thomas J. Watson Research Center)
We demonstrate an embodied cognitive agent that helps scientists visualize and analyze exo-planets and their host stars. The prototype is situated in a room equipped with a large display, microphones, cameras, speakers, and pointing devices. Users communicate with the agent via speech, gestures, and combinations thereof, and it responds by displaying content and generating synthesized speech.
Reports of the 2016 AAAI Workshop Program
Albrecht, Stefano (The University of Texas at Austin) | Bouchard, Bruno (Université du Québec à Chicoutimi) | Brownstein, John S. (Harvard University) | Buckeridge, David L. (McGill University) | Caragea, Cornelia (University of North Texas) | Carter, Kevin M. (MIT Lincoln Laboratory) | Darwiche, Adnan (University of California, Los Angeles) | Fortuna, Blaz (Bloomberg L.P. and Jozef Stefan Institute) | Francillette, Yannick (Université du Québec à Chicoutimi) | Gaboury, Sébastien (Université du Québec à Chicoutimi) | Giles, C. Lee (Pennsylvania State University) | Grobelnik, Marko (Jozef Stefan Institute) | Hruschka, Estevam R. (Federal University of São Carlos) | Kephart, Jeffrey O. (IBM Thomas J. Watson Research Center) | Kordjamshidi, Parisa (University of Illinois at Urbana-Champaign) | Lisy, Viliam (University of Alberta) | Magazzeni, Daniele (King's College London) | Marques-Silva, Joao (University of Lisbon) | Marquis, Pierre (Université d'Artois) | Martinez, David (MIT Lincoln Laboratory) | Michalowski, Martin (Adventium Labs) | Shaban-Nejad, Arash (University of California, Berkeley) | Noorian, Zeinab (Ryerson University) | Pontelli, Enrico (New Mexico State University) | Rogers, Alex (University of Oxford) | Rosenthal, Stephanie (Carnegie Mellon University) | Roth, Dan (University of Illinois at Urbana-Champaign) | Sinha, Arunesh (University of Southern California) | Streilein, William (MIT Lincoln Laboratory) | Thiebaux, Sylvie (The Australian National University) | Tran, Son Cao (New Mexico State University) | Wallace, Byron C. (University of Texas at Austin) | Walsh, Toby (University of New South Wales and Data61) | Witbrock, Michael (Lucid AI) | Zhang, Jie (Nanyang Technological University)
The Workshop Program of the Association for the Advancement of Artificial Intelligence's Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) was held at the beginning of the conference, February 12-13, 2016. Workshop participants met and discussed issues with a selected focus -- providing an informal setting for active exchange among researchers, developers and users on topics of current interest. To foster interaction and exchange of ideas, the workshops were kept small, with 25-65 participants. Attendance was sometimes limited to active participants only, but most workshops also allowed general registration by other interested individuals.
Reports of the 2016 AAAI Workshop Program
Albrecht, Stefano (The University of Texas at Austin) | Bouchard, Bruno (Université du Québec à Chicoutimi) | Brownstein, John S. (Harvard University) | Buckeridge, David L. (McGill University) | Caragea, Cornelia (University of North Texas) | Carter, Kevin M. (MIT Lincoln Laboratory) | Darwiche, Adnan (University of California, Los Angeles) | Fortuna, Blaz (Bloomberg L.P. and Jozef Stefan Institute) | Francillette, Yannick (Université du Québec à Chicoutimi) | Gaboury, Sébastien (Université du Québec à Chicoutimi) | Giles, C. Lee (Pennsylvania State University) | Grobelnik, Marko (Jozef Stefan Institute) | Hruschka, Estevam R. (Federal University of São Carlos) | Kephart, Jeffrey O. (IBM Thomas J. Watson Research Center) | Kordjamshidi, Parisa (University of Illinois at Urbana-Champaign) | Lisy, Viliam (University of Alberta) | Magazzeni, Daniele (King's College London) | Marques-Silva, Joao (University of Lisbon) | Marquis, Pierre (Université d'Artois) | Martinez, David (MIT Lincoln Laboratory) | Michalowski, Martin (Adventium Labs) | Shaban-Nejad, Arash (University of California, Berkeley) | Noorian, Zeinab (Ryerson University) | Pontelli, Enrico (New Mexico State University) | Rogers, Alex (University of Oxford) | Rosenthal, Stephanie (Carnegie Mellon University) | Roth, Dan (University of Illinois at Urbana-Champaign) | Sinha, Arunesh (University of Southern California) | Streilein, William (MIT Lincoln Laboratory) | Thiebaux, Sylvie (The Australian National University) | Tran, Son Cao (New Mexico State University) | Wallace, Byron C. (University of Texas at Austin) | Walsh, Toby (University of New South Wales and Data61) | Witbrock, Michael (Lucid AI) | Zhang, Jie (Nanyang Technological University)
The Workshop Program of the Association for the Advancement of Artificial Intelligence’s Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) was held at the beginning of the conference, February 12-13, 2016. Workshop participants met and discussed issues with a selected focus — providing an informal setting for active exchange among researchers, developers and users on topics of current interest. To foster interaction and exchange of ideas, the workshops were kept small, with 25-65 participants. Attendance was sometimes limited to active participants only, but most workshops also allowed general registration by other interested individuals. The AAAI-16 Workshops were an excellent forum for exploring emerging approaches and task areas, for bridging the gaps between AI and other fields or between subfields of AI, for elucidating the results of exploratory research, or for critiquing existing approaches. The fifteen workshops held at AAAI-16 were Artificial Intelligence Applied to Assistive Technologies and Smart Environments (WS-16-01), AI, Ethics, and Society (WS-16-02), Artificial Intelligence for Cyber Security (WS-16-03), Artificial Intelligence for Smart Grids and Smart Buildings (WS-16-04), Beyond NP (WS-16-05), Computer Poker and Imperfect Information Games (WS-16-06), Declarative Learning Based Programming (WS-16-07), Expanding the Boundaries of Health Informatics Using AI (WS-16-08), Incentives and Trust in Electronic Communities (WS-16-09), Knowledge Extraction from Text (WS-16-10), Multiagent Interaction without Prior Coordination (WS-16-11), Planning for Hybrid Systems (WS-16-12), Scholarly Big Data: AI Perspectives, Challenges, and Ideas (WS-16-13), Symbiotic Cognitive Systems (WS-16-14), and World Wide Web and Population Health Intelligence (WS-16-15).
Stochastic Optimization for Kernel PCA
Zhang, Lijun (Nanjing University) | Yang, Tianbao (University of Iowa) | Yi, Jinfeng (IBM Thomas J. Watson Research Center) | Jin, Rong (Alibaba Group) | Zhou, Zhi-Hua (Nanjing University)
Kernel Principal Component Analysis (PCA) is a popular extension of PCA which is able to find nonlinear patterns from data. However, the application of kernel PCA to large-scale problems remains a big challenge, due to its quadratic space complexity and cubic time complexity in the number of examples. To address this limitation, we utilize techniques from stochastic optimization to solve kernel PCA with linear space and time complexities per iteration. Specifically, we formulate it as a stochastic composite optimization problem, where a nuclear norm regularizer is introduced to promote low-rankness, and then develop a simple algorithm based on stochastic proximal gradient descent. During the optimization process, the proposed algorithm always maintains a low-rank factorization of iterates that can be conveniently held in memory. Compared to previous iterative approaches, a remarkable property of our algorithm is that it is equipped with an explicit rate of convergence. Theoretical analysis shows that the solution of our algorithm converges to the optimal one at an O(1/T) rate, where T is the number of iterations.
A Formal Framework for Studying Interaction in Human-Robot Societies
Chakraborti, Tathagata (Arizona State University) | Talamadupula, Kartik (IBM Thomas J. Watson Research Center) | Zhang, Yu (Arizona State University) | Kambhampati, Subbarao (Arizona State University)
As robots evolve into an integral part of the human ecosystem, humans and robots will be involved in a multitude of collaborative tasks that require complex coordination and cooperation. Indeed there has been extensive work in the robotics, planning as well as the human-robot interaction communities to understand and facilitate such seamless teaming. However, it has been argued that their increased participation as independent autonomous agents in hitherto human-habited environments has introduced many new challenges to the view of traditional human-robot teaming. When robots are deployed with independent and often self-sufficient tasks in a shared workspace, teams are often not formed explicitly and multiple teams cohabiting an environment interact more like colleagues rather than teammates. In this paper, we formalize these differences and analyze metrics to characterize autonomous behavior in such human-robot cohabitation settings.
Modeling and Predicting Popularity Dynamics via Reinforced Poisson Processes
Shen, Huawei (Chinese Academy of Sciences) | Wang, Dashun (IBM Thomas J. Watson Research Center) | Song, Chaoming (University of Miami) | Barabási, Albert-László (Northeastern University)
Indeed, to the best of our knowledge, we lack forgotten over time (Wu and Humberman 2007). For example, a probabilistic framework to model and predict the popularity videos on YouTube or stories on Digg gain their popularity dynamics of individual items. The reason behind this is by striving for views or votes (Szabo and Huberman partly illustrated in Figure 1, suggesting that the dynamical 2010); papers increase their visibility by competing for citations processes governing individual items appear too noisy to be from new papers (Ren et al. 2010; Wang, Song, and amenable to quantification. Barabási 2013); tweets or Hashtags in Twitter become more In this paper, we model the stochastic popularity dynamics popular as being retweeted (Hong, Dan, and Davison 2011) using reinforced Poisson processes, capturing simultaneously and so do webpages as being attached by incoming hyperlinks three key ingredients: fitness of an item, characterizing (Ratkiewicz et al. 2010). An ability to predict the popularity its inherent competitiveness against other items; a general of individual items within a dynamically evolving system temporal relaxation function, corresponding to the aging not only probes our understanding of complex systems, in the ability to attract new attentions; and a reinforcement but also has important implications in a wide range of domains, mechanism, documenting the well-known "rich-get-richer" from marketing and traffic control to policy making phenomenon. The benefit of the proposed model is threefold: and risk management. Despite recent advances of empirical (1) It models the arrival process of individual attentions methods, we lack a general modeling framework to predict directly in contrast to relying on aggregated popularity the popularity of individual items within a complex evolving time series; (2) As a generative probabilistic model, it can be system.
Privacy and Regression Model Preserved Learning
Yi, Jinfeng (IBM Thomas J. Watson Research Center) | Wang, Jun (IBM Thomas J. Watson Research Center) | Jin, Rong (Michigan State University)
Sensitive data such as medical records and business reports usually contains valuable information that can be used to build prediction models. However, designing learning models by directly using sensitive data might result in severe privacy and copyright issues. In this paper, we propose a novel matrix completion based framework that aims to tackle two challenging issues simultaneously: i) handling missing and noisy sensitive data, and ii) preserving the privacy of the sensitive data during the learning process. In particular, the proposed framework is able to mask the sensitive data while ensuring that the transformed data are still usable for training regression models. We show that two key properties, namely model preserving and privacy preserving, are satisfied by the transformed data obtained from the proposed framework. In model preserving, we guarantee that the linear regression model built from the masked data approximates the regression model learned from the original data in a perfect way. In privacy preserving, we ensure that the original sensitive data cannot be recovered since the transformation procedure is irreversible. Given these two characteristics, the transformed data can be safely released to any learners for designing prediction models without revealing any private content. Our empirical studies with a synthesized dataset and multiple sensitive benchmark datasets verify our theoretical claim as well as the effectiveness of the proposed framework.