Harvard University
Reports on the 2017 AAAI Spring Symposium Series
Bohg, Jeannette (Max Planck Institute for Intelligent Systems) | Boix, Xavier (Massachusetts Institute of Technology) | Chang, Nancy (Google) | Churchill, Elizabeth F. (Google) | Chu, Vivian (Georgia Institute of Technology) | Fang, Fei (Harvard University) | Feldman, Jerome (University of California at Berkeley) | González, Avelino J. (University of Central Florida) | Kido, Takashi (Preferred Networks in Japan) | Lawless, William F. (Paine College) | Montaña, José L. (University of Cantabria) | Ontañón, Santiago (Drexel University) | Sinapov, Jivko (University of Texas at Austin) | Sofge, Don (Naval Research Laboratory) | Steels, Luc (Institut de Biologia Evolutiva) | Steenson, Molly Wright (Carnegie Mellon University) | Takadama, Keiki (University of Electro-Communications) | Yadav, Amulya (University of Southern California)
It is also important to remember that having a very sharp distinction of AI A rise in real-world applications of AI has stimulated for social good research is not always feasible, and significant interest from the public, media, and policy often unnecessary. While there has been significant makers. Along with this increasing attention has progress, there still exist many major challenges facing come a media-fueled concern about purported negative the design of effective AIbased approaches to deal consequences of AI, which often overlooks the with the difficulties in real-world domains. One of the societal benefits that AI is delivering and can deliver challenges is interpretability since most algorithms for in the near future. To address these concerns, the AI for social good problems need to be used by human symposium on Artificial Intelligence for the Social end users. Second, the lack of access to valuable data Good (AISOC-17) highlighted the benefits that AI can that could be crucial to the development of appropriate bring to society right now. It brought together AI algorithms is yet another challenge. Third, the researchers and researchers, practitioners, experts, data that we get from the real world is often noisy and and policy makers from a wide variety of domains.
Unsupervised Extraction of Training Data for Pre-Modern Chinese OCR
Sturgeon, Donald (Harvard University)
Many mainstream OCR techniques involve training a character recognition model using labeled exemplary images of each individual character to be recognized. For modern printed writing, such data can be easily created by automated methods such as rasterizing appropriate font data to produce clean example images. For historical OCR in printing and writing styles distinct from those embodied in modern fonts, appropriate character images must instead be extracted from actual historical documents to achieve good recognition accuracy. For languages with small character sets it may feasible to perform this process manually, but for languages with many thousands of characters, such as Chinese, manually collecting this data is often not practical.
PAWS — A Deployed Game-Theoretic Application to Combat Poaching
Fang, Fei (Harvard University) | Nguyen, Thanh H. (University of Michigan) | Pickles, Rob (Panthera) | Lam, Wai Y. (Rimba) | Clements, Gopalasamy R. (Universiti Malaysia Terengganu) | An, Bo (Nanyang Technological University) | Singh, Amandeep (University of Pennsylvania) | Schwedock, Brian C. (University of Southern California) | Tambe, Milin (University of Southern California) | Lemieux, Andrew (The Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), Netherlands)
Poaching is considered a major driver for the population drop of key species such as tigers, elephants, and rhinos, which can be detrimental to whole ecosystems. While conducting foot patrols is the most commonly used approach in many countries to prevent poaching, such patrols often do not make the best use of the limited patrolling resources.
Sequential Peer Prediction: Learning to Elicit Effort using Posted Prices
Liu, Yang (Harvard University) | Chen, Yiling (Harvard University)
Peer prediction mechanisms are often adopted to elicit truthful contributions from crowd workers when no ground-truth verification is available. Recently, mechanisms of this type have been developed to incentivize effort exertion, in addition to truthful elicitation. In this paper, we study a sequential peer prediction problem where a data requester wants to dynamically determine the reward level to optimize the trade-off between the quality of information elicited from workers and the total expected payment. In this problem, workers have homogeneous expertise and heterogeneous cost for exerting effort, both unknown to the requester. We propose a sequential posted-price mechanism to dynamically learn the optimal reward level from workers' contributions and to incentivize effort exertion and truthful reporting. We show that (1) in our mechanism, workers exerting effort according to a non-degenerate threshold policy and then reporting truthfully is an equilibrium that returns highest utility for every worker, and (2) The regret of our learning mechanism w.r.t. offering the optimal reward (price) is upper bounded by Õ( T { 3/4 ) where T is the learning horizon. We further show the power of our learning approach when the reports of workers do not necessarily follow the game-theoretic equilibrium.
Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes
Killian, Taylor W. (Harvard University) | Konidaris, George (Brown University) | Doshi-Velez, Finale (Harvard University)
An intriguing application of transfer learning emerges when tasks arise with similar, but not identical, dynamics. Hidden Parameter Markov Decision Processes (HiP-MDP) embed these tasks into a low-dimensional space; given the embedding parameters one can identify the MDP for a particular task. However, the original formulation of HiP-MDP had a critical flaw: the embedding uncertainty was modeled independently of the agent's state uncertainty, requiring an arduous training procedure. In this work, we apply a Gaussian Process latent variable model to jointly model the dynamics and the embedding, leading to a more elegant formulation, one that allows for better uncertainty quantification and thus more robust transfer.
Learning to Suggest Phrases
Arnold, Kenneth Charles (Harvard University) | Chang, Kai-Wei (University of Virginia) | Kalai, Adam T. (Microsoft Research)
Intelligent keyboards can support writing by suggesting content. Certain types of phrases, when offered as suggestions, may be systematically chosen more often than their frequency in a corpus of text would predict. In order to generate those types of suggestions, we collected a dataset of how human authors responded to suggestions offered to them during open-ended writing tasks. We present an offline strategy for evaluating suggestions that enables us to learn the parameters of an improved suggestion generation policy without the expense of collecting additional data under that policy. We validate the approach by simulation and on human data by demonstrating improvement in held-out suggestion acceptance rate. Our approach can be applied to other scenarios where what is typical is not necessarily what is desirable.
Reports of the AAAI 2016 Spring Symposium Series
Amato, Christopher (University of New Hampshire) | Amir, Ofra (Harvard University) | Bryson, Joanna (University of Bath) | Grosz, Barbara (Harvard University) | Indurkhya, Bipin (Jagiellonian University) | Kiciman, Emre (Microsoft Research) | Kido, Takashi (Rikengenesis) | Lawless, W. F. (Massachusetts Institute of Technology) | Liu, Miao (University of Southern California) | McDorman, Braden (Semio) | Mead, Ross (University of Amsterdam) | Oliehoek, Frans A. (University of Pennsylvania) | Specian, Andrew (American University in Paris) | Stojanov, Georgi (University of Electro-Communications) | Takadama, Keiki
The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2016 Spring Symposium Series on Monday through Wednesday, March 21-23, 2016 at Stanford University. The titles of the seven symposia were (1) AI and the Mitigation of Human Error: Anomalies, Team Metrics and Thermodynamics; (2) Challenges and Opportunities in Multiagent Learning for the Real World (3) Enabling Computing Research in Socially Intelligent Human-Robot Interaction: A Community-Driven Modular Research Platform; (4) Ethical and Moral Considerations in Non-Human Agents; (5) Intelligent Systems for Supporting Distributed Human Teamwork; (6) Observational Studies through Social Media and Other Human-Generated Content, and (7) Well-Being Computing: AI Meets Health and Happiness Science.
Reports of the AAAI 2016 Spring Symposium Series
Amato, Christopher (University of New Hampshire) | Amir, Ofra (Harvard University) | Bryson, Joanna (University of Bath) | Grosz, Barbara (Harvard University) | Indurkhya, Bipin (Jagiellonian University) | Kiciman, Emre (Microsoft Research) | Kido, Takashi (Rikengenesis) | Lawless, W. F. (Massachusetts Institute of Technology) | Liu, Miao (University of Southern California) | McDorman, Braden (Semio) | Mead, Ross (University of Amsterdam) | Oliehoek, Frans A. (University of Pennsylvania) | Specian, Andrew (American University in Paris) | Stojanov, Georgi (University of Electro-Communications) | Takadama, Keiki
The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2016 Spring Symposium Series on Monday through Wednesday, March 21-23, 2016 at Stanford University. The titles of the seven symposia were (1) AI and the Mitigation of Human Error: Anomalies, Team Metrics and Thermodynamics; (2) Challenges and Opportunities in Multiagent Learning for the Real World (3) Enabling Computing Research in Socially Intelligent Human-Robot Interaction: A Community-Driven Modular Research Platform; (4) Ethical and Moral Considerations in Non-Human Agents; (5) Intelligent Systems for Supporting Distributed Human Teamwork; (6) Observational Studies through Social Media and Other Human-Generated Content, and (7) Well-Being Computing: AI Meets Health and Happiness Science.
Reports of the 2016 AAAI Workshop Program
Albrecht, Stefano (The University of Texas at Austin) | Bouchard, Bruno (Université du Québec à Chicoutimi) | Brownstein, John S. (Harvard University) | Buckeridge, David L. (McGill University) | Caragea, Cornelia (University of North Texas) | Carter, Kevin M. (MIT Lincoln Laboratory) | Darwiche, Adnan (University of California, Los Angeles) | Fortuna, Blaz (Bloomberg L.P. and Jozef Stefan Institute) | Francillette, Yannick (Université du Québec à Chicoutimi) | Gaboury, Sébastien (Université du Québec à Chicoutimi) | Giles, C. Lee (Pennsylvania State University) | Grobelnik, Marko (Jozef Stefan Institute) | Hruschka, Estevam R. (Federal University of São Carlos) | Kephart, Jeffrey O. (IBM Thomas J. Watson Research Center) | Kordjamshidi, Parisa (University of Illinois at Urbana-Champaign) | Lisy, Viliam (University of Alberta) | Magazzeni, Daniele (King's College London) | Marques-Silva, Joao (University of Lisbon) | Marquis, Pierre (Université d'Artois) | Martinez, David (MIT Lincoln Laboratory) | Michalowski, Martin (Adventium Labs) | Shaban-Nejad, Arash (University of California, Berkeley) | Noorian, Zeinab (Ryerson University) | Pontelli, Enrico (New Mexico State University) | Rogers, Alex (University of Oxford) | Rosenthal, Stephanie (Carnegie Mellon University) | Roth, Dan (University of Illinois at Urbana-Champaign) | Sinha, Arunesh (University of Southern California) | Streilein, William (MIT Lincoln Laboratory) | Thiebaux, Sylvie (The Australian National University) | Tran, Son Cao (New Mexico State University) | Wallace, Byron C. (University of Texas at Austin) | Walsh, Toby (University of New South Wales and Data61) | Witbrock, Michael (Lucid AI) | Zhang, Jie (Nanyang Technological University)
The Workshop Program of the Association for the Advancement of Artificial Intelligence's Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) was held at the beginning of the conference, February 12-13, 2016. Workshop participants met and discussed issues with a selected focus -- providing an informal setting for active exchange among researchers, developers and users on topics of current interest. To foster interaction and exchange of ideas, the workshops were kept small, with 25-65 participants. Attendance was sometimes limited to active participants only, but most workshops also allowed general registration by other interested individuals.
Reports of the 2016 AAAI Workshop Program
Albrecht, Stefano (The University of Texas at Austin) | Bouchard, Bruno (Université du Québec à Chicoutimi) | Brownstein, John S. (Harvard University) | Buckeridge, David L. (McGill University) | Caragea, Cornelia (University of North Texas) | Carter, Kevin M. (MIT Lincoln Laboratory) | Darwiche, Adnan (University of California, Los Angeles) | Fortuna, Blaz (Bloomberg L.P. and Jozef Stefan Institute) | Francillette, Yannick (Université du Québec à Chicoutimi) | Gaboury, Sébastien (Université du Québec à Chicoutimi) | Giles, C. Lee (Pennsylvania State University) | Grobelnik, Marko (Jozef Stefan Institute) | Hruschka, Estevam R. (Federal University of São Carlos) | Kephart, Jeffrey O. (IBM Thomas J. Watson Research Center) | Kordjamshidi, Parisa (University of Illinois at Urbana-Champaign) | Lisy, Viliam (University of Alberta) | Magazzeni, Daniele (King's College London) | Marques-Silva, Joao (University of Lisbon) | Marquis, Pierre (Université d'Artois) | Martinez, David (MIT Lincoln Laboratory) | Michalowski, Martin (Adventium Labs) | Shaban-Nejad, Arash (University of California, Berkeley) | Noorian, Zeinab (Ryerson University) | Pontelli, Enrico (New Mexico State University) | Rogers, Alex (University of Oxford) | Rosenthal, Stephanie (Carnegie Mellon University) | Roth, Dan (University of Illinois at Urbana-Champaign) | Sinha, Arunesh (University of Southern California) | Streilein, William (MIT Lincoln Laboratory) | Thiebaux, Sylvie (The Australian National University) | Tran, Son Cao (New Mexico State University) | Wallace, Byron C. (University of Texas at Austin) | Walsh, Toby (University of New South Wales and Data61) | Witbrock, Michael (Lucid AI) | Zhang, Jie (Nanyang Technological University)
The Workshop Program of the Association for the Advancement of Artificial Intelligence’s Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) was held at the beginning of the conference, February 12-13, 2016. Workshop participants met and discussed issues with a selected focus — providing an informal setting for active exchange among researchers, developers and users on topics of current interest. To foster interaction and exchange of ideas, the workshops were kept small, with 25-65 participants. Attendance was sometimes limited to active participants only, but most workshops also allowed general registration by other interested individuals. The AAAI-16 Workshops were an excellent forum for exploring emerging approaches and task areas, for bridging the gaps between AI and other fields or between subfields of AI, for elucidating the results of exploratory research, or for critiquing existing approaches. The fifteen workshops held at AAAI-16 were Artificial Intelligence Applied to Assistive Technologies and Smart Environments (WS-16-01), AI, Ethics, and Society (WS-16-02), Artificial Intelligence for Cyber Security (WS-16-03), Artificial Intelligence for Smart Grids and Smart Buildings (WS-16-04), Beyond NP (WS-16-05), Computer Poker and Imperfect Information Games (WS-16-06), Declarative Learning Based Programming (WS-16-07), Expanding the Boundaries of Health Informatics Using AI (WS-16-08), Incentives and Trust in Electronic Communities (WS-16-09), Knowledge Extraction from Text (WS-16-10), Multiagent Interaction without Prior Coordination (WS-16-11), Planning for Hybrid Systems (WS-16-12), Scholarly Big Data: AI Perspectives, Challenges, and Ideas (WS-16-13), Symbiotic Cognitive Systems (WS-16-14), and World Wide Web and Population Health Intelligence (WS-16-15).