Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes
Killian, Taylor W. (Harvard University) | Konidaris, George (Brown University) | Doshi-Velez, Finale (Harvard University)
An intriguing application of transfer learning emerges when tasks arise with similar, but not identical, dynamics. Hidden Parameter Markov Decision Processes (HiP-MDP) embed these tasks into a low-dimensional space; given the embedding parameters one can identify the MDP for a particular task. However, the original formulation of HiP-MDP had a critical flaw: the embedding uncertainty was modeled independently of the agent's state uncertainty, requiring an arduous training procedure. In this work, we apply a Gaussian Process latent variable model to jointly model the dynamics and the embedding, leading to a more elegant formulation, one that allows for better uncertainty quantification and thus more robust transfer.
Feb-14-2017