Goto

Collaborating Authors

 Ecole Polytechnique Federale de Lausanne


Associate Latent Encodings in Learning from Demonstrations

AAAI Conferences

We contribute a learning from demonstration approach for robots to acquire skills from multi-modal high-dimensional data. Both latent representations and associations of different modalities are proposed to be jointly learned through an adapted variational auto-encoder. The implementation and results are demonstrated in a robotic handwriting scenario, where the visual sensory input and the arm joint writing motion are learned and coupled. We show the latent representations successfully construct a task manifold for the observed sensor modalities. Moreover, the learned associations can be exploited to directly synthesize arm joint handwriting motion from an image input in an end-to-end manner. The advantages of learning associative latent encodings are further highlighted with the examples of inferring upon incomplete input images. A comparison with alternative methods demonstrates the superiority of the present approach in these challenging tasks.


A Region-Based Model for Estimating Urban Air Pollution

AAAI Conferences

Air pollution has a direct impact to human health, and data-driven air quality models are useful for evaluating population exposure to air pollutants. In this paper, we propose a novel region-based Gaussian process model for estimating urban air pollution dispersion, and applied it to a large dataset of ultrafine particle (UFP) measurements collected from a network of sensors located on several trams in the city of Zurich. We show that compared to existing grid-based models, the region-based model produces better predictions across aggregates of all time scales. The new model is appropriate for many useful user applications such as exposure assessment and anomaly detection.


Filtering Bounded Knapsack Constraints in Expected Sublinear Time

AAAI Conferences

We present a highly efficient incremental algorithm for propagating bounded knapsack constraints. Our algorithm is based on the sublinear filtering algorithm for binary knapsack constraints by Katriel et al. and achieves similar speed-ups of one to two orders of magnitude when compared with its linear-time counterpart. We also show that the representation of bounded knapsacks as binary knapsacks leads to ineffective filtering behavior. Experiments on standard knapsack benchmarks show that the new algorithm significantly outperforms existing methods for handling bounded knapsack constraints.