Goto

Collaborating Authors

 Duke University


Disarmament Games

AAAI Conferences

Much recent work in the AI community concerns algorithms for computing optimal mixed strategies to commit to, as well as the deployment of such algorithms in real security applications. Another possibility is to commit not to play certain actions. If only one player makes such a commitment, then this is generally less powerful than completely committing to a single mixed strategy. However, if players can alternatingly commit not to play certain actions and thereby iteratively reduce their strategy spaces, then desirable outcomes can be obtained that would not have been possible with just a single player committing to a mixed strategy. We refer to such a setting as a disarmament game. In this paper, we study disarmament for two-player normal-form games. We show that deciding whether an outcome can be obtained with disarmament is NP-complete (even for a fixed number of rounds), if only pure strategies can be removed. On the other hand, for the case where mixed strategies can be removed, we provide a folk theorem that shows that all desirable utility profiles can be obtained, and give an efficient algorithm for (approximately) obtaining them.


Automated Design of Robust Mechanisms

AAAI Conferences

We introduce a new class of mechanisms, robust mechanisms, that is an intermediary between ex-post mechanisms and Bayesian mechanisms. This new class of mechanisms allows the mechanism designer to incorporate imprecise estimates of the distribution over bidder valuations in a way that provides strong guarantees that the mechanism will perform at least as well as ex-post mechanisms, while in many cases performing better. We further extend this class to mechanisms that are with high probability incentive compatible and individually rational, ฮต-robust mechanisms. Using techniques from automated mechanism design and robust optimization, we provide an algorithm polynomial in the number of bidder types to design robust and ฮต-robust mechanisms. We show experimentally that this new class of mechanisms can significantly outperform traditional mechanism design techniques when the mechanism designer has an estimate of the distribution and the bidderโ€™s valuation is correlated with an externally verifiable signal.


Unsupervised Learning with Truncated Gaussian Graphical Models

AAAI Conferences

Gaussian graphical models (GGMs) are widely used for statistical modeling, because of ease of inference and the ubiquitous use of the normal distribution in practical approximations. However, they are also known for their limited modeling abilities, due to the Gaussian assumption. In this paper, we introduce a novel variant of GGMs, which relaxes the Gaussian restriction and yet admits efficient inference. Specifically, we impose a bipartite structure on the GGM and govern the hidden variables by truncated normal distributions. The nonlinearity of the model is revealed by its connection to rectified linear unit (ReLU) neural networks. Meanwhile, thanks to the bipartite structure and appealing properties of truncated normals, we are able to train the models efficiently using contrastive divergence. We consider three output constructs, accounting for real-valued, binary and count data. We further extend the model to deep constructions and show that deep models can be used for unsupervised pre-training of rectifier neural networks. Extensive experimental results are provided to validate the proposed models and demonstrate their superiority over competing models.


Moral Decision Making Frameworks for Artificial Intelligence

AAAI Conferences

The generality of decision and game theory has enabled domain-independent progress in AI research. For example, a better algorithm for finding good policies in (PO)MDPs can be instantly used in a variety of applications. But such a general theory is lacking when it comes to moral decision making. For AI applications with a moral component, are we then forced to build systems based on many ad-hoc rules? In this paper we discuss possible ways to avoid this conclusion.


Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks

AAAI Conferences

Effective training of deep neural networks suffers from two main issues. The first is that the parameter space of these models exhibit pathological curvature. Recent methods address this problem by using adaptive preconditioning for Stochastic Gradient Descent (SGD). These methods improve convergence by adapting to the local geometry of parameter space. A second issue is overfitting, which is typically addressed by early stopping. However, recent work has demonstrated that Bayesian model averaging mitigates this problem. The posterior can be sampled by using Stochastic Gradient Langevin Dynamics (SGLD). However, the rapidly changing curvature renders default SGLD methods inefficient. Here, we propose combining adaptive preconditioners with SGLD. In support of this idea, we give theoretical properties on asymptotic convergence and predictive risk. We also provide empirical results for Logistic Regression, Feedforward Neural Nets, and Convolutional Neural Nets, demonstrating that our preconditioned SGLD method gives state-of-the-art performance on these models.


A Unifying Variational Inference Framework for Hierarchical Graph-Coupled HMM with an Application to Influenza Infection

AAAI Conferences

The Hierarchical Graph-Coupled Hidden Markov Model (hGCHMM) is a useful tool for tracking and predicting the spread of contagious diseases, such as influenza, by leveraging social contact data collected from individual wearable devices. However, the existing inference algorithms depend on the assumption that the infection rates are small in probability, typically close to 0. The purpose of this paper is to build a unified learning framework for latent infection state estimation for the hGCHMM, regardless of the infection rate and transition function. We derive our algorithm based on a dynamic auto-encoding variational inference scheme, thus potentially generalizing the hGCHMM to models other than those that work on highly contagious diseases. We experimentally compare our approach with previous Gibbs EM algorithms and standard variational method mean-field inference, on both semi-synthetic data and app collected epidemiological and social records.


Learning a Hybrid Architecture for Sequence Regression and Annotation

AAAI Conferences

When learning a hidden Markov model (HMM), sequential observations can often be complemented by real-valued summary response variables generated from the path of hidden states. Such settings arise in numerous domains, including many applications in biology, like motif discovery and genome annotation. In this paper, we present a flexible framework for jointly modeling both latent sequence features and the functional mapping that relates the summary response variables to the hidden state sequence. The algorithm is compatible with a rich set of mapping functions. Results show that the availability of additional continuous response variables can simultaneously improve the annotation of the sequential observations and yield good prediction performance in both synthetic data and real-world datasets.


Distance Minimization for Reward Learning from Scored Trajectories

AAAI Conferences

Many planning methods rely on the use of an immediate reward function as a portable and succinct representation of desired behavior. Rewards are often inferred from demonstrated behavior that is assumed to be near-optimal. We examine a framework, Distance Minimization IRL (DM-IRL), for learning reward functions from scores an expert assigns to possibly suboptimal demonstrations. By changing the expertโ€™s role from a demonstrator to a judge, DM-IRL relaxes some of the assumptions present in IRL, enabling learning from the scoring of arbitrary demonstration trajectories with unknown transition functions. DM-IRL complements existing IRL approaches by addressing different assumptions about the expert. We show that DM-IRL is robust to expert scoring error and prove that finding a policy that produces maximally informative trajectories for an expert to score is strongly NP-hard. Experimentally, we demonstrate that the reward function DM-IRL learns from an MDP with an unknown transition model can transfer to an agent with known characteristics in a novel environment, and we achieve successful learning with limited available training data.


Efficient PAC-Optimal Exploration in Concurrent, Continuous State MDPs with Delayed Updates

AAAI Conferences

We present a new, efficient PAC optimal exploration algorithm that is able to explore in multiple, continuous or discrete state MDPs simultaneously. Our algorithm does not assume that value function updates can be completed instantaneously, and maintains PAC guarantees in realtime environments. Not only do we extend the applicability of PAC optimal exploration algorithms to new, realistic settings, but even when instant value function updates are possible, our bounds present a significant improvement over previous single MDP exploration bounds, and a drastic improvement over previous concurrent PAC bounds. We also present TCE, a new, fine grained metric for the cost of exploration.


Computing Possible and Necessary Equilibrium Actions (and Bipartisan Set Winners)

AAAI Conferences

In many multiagent environments, a designer has some, but limited control over the game being played. In this paper, we formalize this by considering incompletely specified games, in which some entries of the payoff matrices can be chosen from a specified set. We show that it is NP-hard for the designer to make this choices optimally, even in zero-sum games. In fact, it is already intractable to decide whether a given action is (potentially or necessarily) played in equilibrium. We also consider incompletely specified symmetric games in which all completions are required to be symmetric. Here, hardness holds even in weak tournament games (symmetric zero-sum games whose entries are all -1, 0, or 1) and in tournament games (symmetric zero-sum games whose non-diagonal entries are all -1 or 1). The latter result settles the complexity of the possible and necessary winner problems for a social-choice-theoretic solution concept known as the bipartisan set. We finally give a mixed-integer linear programming formulation for weak tournament games and evaluate it experimentally.