Budapest University of Technology and Economics
The International Competition of Distributed and Multiagent Planners (CoDMAP)
Komenda, Antonín (Czech Technical University in Prague) | Stolba, Michal (Czech Technical University in Prague) | Kovacs, Daniel L. (Budapest University of Technology and Economics)
This article reports on the first international Competition of Distributed and Multiagent Planners (CoDMAP). The competition focused on cooperative domain-independent planners compatible with a minimal multiagent extension of the classical planning model. The motivations for the competition were manifold: to standardize the problem description language with a common set of benchmarks, to promote development of multiagent planners both inside and outside of the multiagent research community, and to serve as a prototype for future multiagent planning competitions. The article provides an overview of cooperative multiagent planning, describes a novel variant of standardized input language for encoding mutliagent planning problems and summarizes the key points of organization, competing planners and results of the competition.
The International Competition of Distributed and Multiagent Planners (CoDMAP)
Komenda, Antonín (Czech Technical University in Prague) | Stolba, Michal (Czech Technical University in Prague) | Kovacs, Daniel L. (Budapest University of Technology and Economics)
This article reports on the first international Competition of Distributed and Multiagent Planners (CoDMAP). The competition focused on cooperative domain-independent planners compatible with a minimal multiagent extension of the classical planning model. The motivations for the competition were manifold: to standardize the problem description language with a common set of benchmarks, to promote development of multiagent planners both inside and outside of the multiagent research community, and to serve as a prototype for future multiagent planning competitions. The article provides an overview of cooperative multiagent planning, describes a novel variant of standardized input language for encoding mutliagent planning problems and summarizes the key points of organization, competing planners and results of the competition.
Competition of Distributed and Multiagent Planners (CoDMAP)
Štolba, Michal (Czech Technical University in Prague) | Komenda, Antonín (Czech Technical University in Prague) | Kovacs, Daniel L. (Budapest University of Technology and Economics)
As a part of the workshop on Distributed and Multiagent Planning (DMAP) at the International Conference on Automated Planning and Scheduling (ICAPS) 2015, we have organized a competition in distributed and multiagent planning. The main aims of the competition were to consolidate the planners in terms of input format; to promote development of multiagent planners both inside and outside of the multiagent research community; and to provide a proof-of-concept of a potential future multiagent planning track of the International Planning Competition (IPC). In this paper we summarize course and highlights of the competition.
Campaign Management under Approval-Driven Voting Rules
Schlotter, Ildiko (Budapest University of Technology and Economics) | Faliszewski, Piotr (AGH Univesity of Science and Technology) | Elkind, Edith (Nanyang Technological University)
Approval-like voting rules, such as Sincere-Strategy Preference-Based Approval voting (SP-AV), the Bucklin rule (an adaptive variant of k-Approval voting), and the Fallback rule (an adaptive variant of SP-AV) have many desirable properties: for example, they are easy to understand and encourage the candidates to choose electoral platforms that have a broad appeal. In this paper, we investigate both classic and parameterized computational complexity of electoral campaign management under such rules. We focus on two methods that can be used to promote a given candidate: asking voters to move this candidate upwards in their preference order or asking them to change the number of candidates they approve of. We show that finding an optimal campaign management strategy of the first type is easy for both Bucklin and Fallback. In contrast, the second method is computationally hard even if the degree to which we need to affect the votes is small. Nevertheless, we identify a large class of scenarios that admit a fixed-parameter tractable algorithm.