Goto

Collaborating Authors

 van de Geer, Sara


AdaBoost and robust one-bit compressed sensing

arXiv.org Machine Learning

This paper studies binary classification in robust one-bit compressed sensing with adversarial errors. It is assumed that the model is overparameterized and that the parameter of interest is effectively sparse. AdaBoost is considered, and, through its relation to the max-$\ell_1$-margin-classifier, risk bounds are derived. In particular, this provides an explanation why interpolating adversarial noise can be harmless for classification problems. Simulations illustrate the presented theory.


Minimum $\ell_1-$norm interpolation via basis pursuit is robust to errors

arXiv.org Machine Learning

This article studies basis pursuit, i.e. minimum $\ell_1$-norm interpolation, in sparse linear regression with additive errors. No conditions on the errors are imposed. It is assumed that the number of i.i.d. Gaussian features grows superlinear in the number of samples. The main result is that under these conditions the Euclidean error of recovering the true regressor is of the order of the average noise level. Hence, the regressor recovered by basis pursuit is close to the truth if the average noise level is small. Lower bounds that show near optimality of the results complement the analysis. In addition, these results are extended to low rank trace regression. The proofs rely on new lower tail bounds for maxima of Gaussians vectors and the spectral norm of Gaussian matrices, respectively, and might be of independent interest as they are significantly stronger than the corresponding upper tail bounds.


Oracle inequalities for square root analysis estimators with application to total variation penalties

arXiv.org Machine Learning

We study the analysis estimator directly, without any step through a synthesis formulation. For the analysis estimator we derive oracle inequalities with fast and slow rates by adapting the arguments involving projections by Dalalyan, Hebiri and Lederer (2017). We then extend the theory to the case of the square root analysis estimator. Finally, we narrow down our attention to a particular class of analysis estimators: (square root) total variation regularized estimators on graphs. In this case, we obtain constant-friendly rates which match up to log-terms previous results obtained by entropy calculations. Moreover, we obtain an oracle inequality for the (square root) total variation regularized estimator over the cycle graph.


On the total variation regularized estimator over a class of tree graphs

arXiv.org Machine Learning

We generalize to tree graphs obtained by connecting path graphs an oracle result obtained for the Fused Lasso over the path graph. Moreover we show that it is possible to substitute in the oracle inequality the minimum of the distances between jumps by their harmonic mean. In doing so we prove a lower bound on the compatibility constant for the total variation penalty. Our analysis leverages insights obtained for the path graph with one branch to understand the case of more general tree graphs. As a side result, we get insights into the irrepresentable condition for such tree graphs.


A Framework for the construction of upper bounds on the number of affine linear regions of ReLU feed-forward neural networks

arXiv.org Machine Learning

In this work we present a new framework to derive upper bounds on the number regions of feed-forward neural nets with ReLU activation functions. We derive all existing such bounds as special cases, however in a different representation in terms of matrices. This provides new insight and allows a more detailed analysis of the corresponding bounds. In particular, we provide a Jordan-like decomposition for the involved matrices and present new tighter results for an asymptotic setting. Moreover, new even stronger bounds may be obtained from our framework.


Asymptotic Confidence Regions for High-dimensional Structured Sparsity

arXiv.org Machine Learning

In the setting of high-dimensional linear regression models, we propose two frameworks for constructing pointwise and group confidence sets for penalized estimators which incorporate prior knowledge about the organization of the non-zero coefficients. This is done by desparsifying the estimator as in van de Geer et al. [18] and van de Geer and Stucky [17], then using an appropriate estimator for the precision matrix $\Theta$. In order to estimate the precision matrix a corresponding structured matrix norm penalty has to be introduced. After normalization the result is an asymptotic pivot. The asymptotic behavior is studied and simulations are added to study the differences between the two schemes.


High-dimensional additive modeling

arXiv.org Machine Learning

We propose a new sparsity-smoothness penalty for high-dimensional generalized additive models. The combination of sparsity and smoothness is crucial for mathematical theory as well as performance for finite-sample data. We present a computationally efficient algorithm, with provable numerical convergence properties, for optimizing the penalized likelihood. Furthermore, we provide oracle results which yield asymptotic optimality of our estimator for high dimensional but sparse additive models. Finally, an adaptive version of our sparsity-smoothness penalized approach yields large additional performance gains.


Adaptive Lasso for High Dimensional Regression and Gaussian Graphical Modeling

arXiv.org Machine Learning

We show that the two-stage adaptive Lasso procedure (Zou, 2006) is consistent for high-dimensional model selection in linear and Gaussian graphical models. Our conditions for consistency cover more general situations than those accomplished in previous work: we prove that restricted eigenvalue conditions (Bickel et al., 2008) are also sufficient for sparse structure estimation.


Taking Advantage of Sparsity in Multi-Task Learning

arXiv.org Machine Learning

We study the problem of estimating multiple linear regression equations for the purpose of both prediction and variable selection. Following recent work on multi-task learning Argyriou et al. [2008], we assume that the regression vectors share the same sparsity pattern. This means that the set of relevant predictor variables is the same across the different equations. This assumption leads us to consider the Group Lasso as a candidate estimation method. We show that this estimator enjoys nice sparsity oracle inequalities and variable selection properties. The results hold under a certain restricted eigenvalue condition and a coherence condition on the design matrix, which naturally extend recent work in Bickel et al. [2007], Lounici [2008]. In particular, in the multi-task learning scenario, in which the number of tasks can grow, we are able to remove completely the effect of the number of predictor variables in the bounds. Finally, we show how our results can be extended to more general noise distributions, of which we only require the variance to be finite.