van Rijn, Pol
Are Expressions for Music Emotions the Same Across Cultures?
Celen, Elif, van Rijn, Pol, Lee, Harin, Jacoby, Nori
Music evokes profound emotions, yet the universality of emotional descriptors across languages remains debated. A key challenge in cross-cultural research on music emotion is biased stimulus selection and manual curation of taxonomies, predominantly relying on Western music and languages. To address this, we propose a balanced experimental design with nine online experiments in Brazil, the US, and South Korea, involving N=672 participants. First, we sample a balanced set of popular music from these countries. Using an open-ended tagging pipeline, we then gather emotion terms to create culture-specific taxonomies. Finally, using these bottom-up taxonomies, participants rate emotions of each song. This allows us to map emotional similarities within and across cultures. Results show consistency in high arousal, high valence emotions but greater variability in others. Notably, machine translations were often inadequate to capture music-specific meanings. These findings together highlight the need for a domain-sensitive, open-ended, bottom-up emotion elicitation approach to reduce cultural biases in emotion research.
A Rational Analysis of the Speech-to-Song Illusion
Marjieh, Raja, van Rijn, Pol, Sucholutsky, Ilia, Lee, Harin, Griffiths, Thomas L., Jacoby, Nori
The speech-to-song illusion is a robust psychological phenomenon whereby a spoken sentence sounds increasingly more musical as it is repeated. Despite decades of research, a complete formal account of this transformation is still lacking, and some of its nuanced characteristics, namely, that certain phrases appear to transform while others do not, is not well understood. Here we provide a formal account of this phenomenon, by recasting it as a statistical inference whereby a rational agent attempts to decide whether a sequence of utterances is more likely to have been produced in a song or speech. Using this approach and analyzing song and speech corpora, we further introduce a novel prose-to-lyrics illusion that is purely text-based. In this illusion, simply duplicating written sentences makes them appear more like song lyrics. We provide robust evidence for this new illusion in both human participants and large language models.
Giving Robots a Voice: Human-in-the-Loop Voice Creation and open-ended Labeling
van Rijn, Pol, Mertes, Silvan, Janowski, Kathrin, Weitz, Katharina, Jacoby, Nori, Andrรฉ, Elisabeth
Speech is a natural interface for humans to interact with robots. Yet, aligning a robot's voice to its appearance is challenging due to the rich vocabulary of both modalities. Previous research has explored a few labels to describe robots and tested them on a limited number of robots and existing voices. Here, we develop a robot-voice creation tool followed by large-scale behavioral human experiments (N=2,505). First, participants collectively tune robotic voices to match 175 robot images using an adaptive human-in-the-loop pipeline. Then, participants describe their impression of the robot or their matched voice using another human-in-the-loop paradigm for open-ended labeling. The elicited taxonomy is then used to rate robot attributes and to predict the best voice for an unseen robot. We offer a web interface to aid engineers in customizing robot voices, demonstrating the synergy between cognitive science and machine learning for engineering tools.
Large language models predict human sensory judgments across six modalities
Marjieh, Raja, Sucholutsky, Ilia, van Rijn, Pol, Jacoby, Nori, Griffiths, Thomas L.
Determining the extent to which the perceptual world can be recovered from language is a longstanding problem in philosophy and cognitive science. We show that state-of-the-art large language models can unlock new insights into this problem by providing a lower bound on the amount of perceptual information that can be extracted from language. Specifically, we elicit pairwise similarity judgments from GPT models across six psychophysical datasets. We show that the judgments are significantly correlated with human data across all domains, recovering well-known representations like the color wheel and pitch spiral. Surprisingly, we find that a model (GPT-4) co-trained on vision and language does not necessarily lead to improvements specific to the visual modality. To study the influence of specific languages on perception, we also apply the models to a multilingual color-naming task. We find that GPT-4 replicates cross-linguistic variation in English and Russian illuminating the interaction of language and perception.
Words are all you need? Language as an approximation for human similarity judgments
Marjieh, Raja, van Rijn, Pol, Sucholutsky, Ilia, Sumers, Theodore R., Lee, Harin, Griffiths, Thomas L., Jacoby, Nori
Human similarity judgments are a powerful supervision signal for machine learning applications based on techniques such as contrastive learning, information retrieval, and model alignment, but classical methods for collecting human similarity judgments are too expensive to be used at scale. Recent methods propose using pre-trained deep neural networks (DNNs) to approximate human similarity, but pre-trained DNNs may not be available for certain domains (e.g., medical images, low-resource languages) and their performance in approximating human similarity has not been extensively tested. We conducted an evaluation of 611 pre-trained models across three domains -- images, audio, video -- and found that there is a large gap in performance between human similarity judgments and pre-trained DNNs. To address this gap, we propose a new class of similarity approximation methods based on language. To collect the language data required by these new methods, we also developed and validated a novel adaptive tag collection pipeline. We find that our proposed language-based methods are significantly cheaper, in the number of human judgments, than classical methods, but still improve performance over the DNN-based methods. Finally, we also develop `stacked' methods that combine language embeddings with DNN embeddings, and find that these consistently provide the best approximations for human similarity across all three of our modalities. Based on the results of this comprehensive study, we provide a concise guide for researchers interested in collecting or approximating human similarity data. To accompany this guide, we also release all of the similarity and language data, a total of 206,339 human judgments, that we collected in our experiments, along with a detailed breakdown of all modeling results.
Around the world in 60 words: A generative vocabulary test for online research
van Rijn, Pol, Sun, Yue, Lee, Harin, Marjieh, Raja, Sucholutsky, Ilia, Lanzarini, Francesca, Andrรฉ, Elisabeth, Jacoby, Nori
Conducting experiments with diverse participants in their native languages can uncover insights into culture, cognition, and language that may not be revealed otherwise. However, conducting these experiments online makes it difficult to validate self-reported language proficiency. Furthermore, existing proficiency tests are small and cover only a few languages. We present an automated pipeline to generate vocabulary tests using text from Wikipedia. Our pipeline samples rare nouns and creates pseudowords with the same low-level statistics. Six behavioral experiments (N=236) in six countries and eight languages show that (a) our test can distinguish between native speakers of closely related languages, (b) the test is reliable ($r=0.82$), and (c) performance strongly correlates with existing tests (LexTale) and self-reports. We further show that test accuracy is negatively correlated with the linguistic distance between the tested and the native language. Our test, available in eight languages, can easily be extended to other languages.
WavThruVec: Latent speech representation as intermediate features for neural speech synthesis
Siuzdak, Hubert, Dura, Piotr, van Rijn, Pol, Jacoby, Nori
Recent advances in neural text-to-speech research have been dominated by two-stage pipelines utilizing low-level intermediate speech representation such as mel-spectrograms. However, such predetermined features are fundamentally limited, because they do not allow to exploit the full potential of a data-driven approach through learning hidden representations. For this reason, several end-to-end methods have been proposed. However, such models are harder to train and require a large number of high-quality recordings with transcriptions. Here, we propose WavThruVec - a two-stage architecture that resolves the bottleneck by using high-dimensional Wav2Vec 2.0 embeddings as intermediate speech representation. Since these hidden activations provide high-level linguistic features, they are more robust to noise. That allows us to utilize annotated speech datasets of a lower quality to train the first-stage module. At the same time, the second-stage component can be trained on large-scale untranscribed audio corpora, as Wav2Vec 2.0 embeddings are already time-aligned. This results in an increased generalization capability to out-of-vocabulary words, as well as to a better generalization to unseen speakers. We show that the proposed model not only matches the quality of state-of-the-art neural models, but also presents useful properties enabling tasks like voice conversion or zero-shot synthesis.
Gibbs Sampling with People
Harrison, Peter M. C., Marjieh, Raja, Adolfi, Federico, van Rijn, Pol, Anglada-Tort, Manuel, Tchernichovski, Ofer, Larrouy-Maestri, Pauline, Jacoby, Nori
A core problem in cognitive science and machine learning is to understand how humans derive semantic representations from perceptual objects, such as color from an apple, pleasantness from a musical chord, or trustworthiness from a face. Markov Chain Monte Carlo with People (MCMCP) is a prominent method for studying such representations, in which participants are presented with binary choice trials constructed such that the decisions follow a Markov Chain Monte Carlo acceptance rule. However, MCMCP's binary choice paradigm generates relatively little information per trial, and its local proposal function makes it slow to explore the parameter space and find the modes of the distribution. Here we therefore generalize MCMCP to a continuous-sampling paradigm, where in each iteration the participant uses a slider to continuously manipulate a single stimulus dimension to optimize a given criterion such as 'pleasantness'. We formulate both methods from a utility-theory perspective, and show that the new method can be interpreted as 'Gibbs Sampling with People' (GSP). Further, we introduce an aggregation parameter to the transition step, and show that this parameter can be manipulated to flexibly shift between Gibbs sampling and deterministic optimization. In an initial study, we show GSP clearly outperforming MCMCP; we then show that GSP provides novel and interpretable results in three other domains, namely musical chords, vocal emotions, and faces. We validate these results through large-scale perceptual rating experiments. The final experiments combine GSP with a state-of-the-art image synthesis network (StyleGAN) and a recent network interpretability technique (GANSpace), enabling GSP to efficiently explore high-dimensional perceptual spaces, and demonstrating how GSP can be a powerful tool for jointly characterizing semantic representations in humans and machines.