Goto

Collaborating Authors

 szlam, arthur


Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

Neural Information Processing Systems

In this paper we introduce a generative model capable of producing high quality samples of natural images. Our approach uses a cascade of convolutional networks (convnets) within a Laplacian pyramid framework to generate images in a coarse-to-fine fashion. At each level of the pyramid a separate generative convnet model is trained using the Generative Adversarial Nets (GAN) approach. Samples drawn from our model are of significantly higher quality than existing models. In a quantitive assessment by human evaluators our CIFAR10 samples were mistaken for real images around 40% of the time, compared to 10% for GAN samples.


Learning Multiagent Communication with Backpropagation

Neural Information Processing Systems

Many tasks in AI require the collaboration of multiple agents. Typically, the communication protocol between agents is manually specified and not altered during training. In this paper we explore a simple neural model, called CommNet, that uses continuous communication for fully cooperative tasks. The model consists of multiple agents and the communication between them is learned alongside their policy. We apply this model to a diverse set of tasks, demonstrating the ability of the agents to learn to communicate amongst themselves, yielding improved performance over non-communicative agents and baselines. In some cases, it is possible to interpret the language devised by the agents, revealing simple but effective strategies for solving the task at hand.


The Product Cut

Neural Information Processing Systems

We introduce a theoretical and algorithmic framework for multi-way graph partitioning that relies on a multiplicative cut-based objective. We refer to this objective as the Product Cut. We provide a detailed investigation of the mathematical properties of this objective and an effective algorithm for its optimization. The proposed model has strong mathematical underpinnings, and the corresponding algorithm achieves state-of-the-art performance on benchmark data sets.


Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

Neural Information Processing Systems

In this paper we introduce a generative model capable of producing high quality samples of natural images. Our approach uses a cascade of convolutional networks (convnets) within a Laplacian pyramid framework to generate images in a coarse-to-fine fashion. At each level of the pyramid a separate generative convnet model is trained using the Generative Adversarial Nets (GAN) approach. Samples drawn from our model are of significantly higher quality than existing models. In a quantitive assessment by human evaluators our CIFAR10 samples were mistaken for real images around 40% of the time, compared to 10% for GAN samples. We also show samples from more diverse datasets such as STL10 and LSUN.


End-To-End Memory Networks

Neural Information Processing Systems

We introduce a neural network with a recurrent attention model over a possibly large external memory. The architecture is a form of Memory Network (Weston et al., 2015) but unlike the model in that work, it is trained end-to-end, and hence requires significantly less supervision during training, making it more generally applicable in realistic settings. It can also be seen as an extension of RNNsearch to the case where multiple computational steps (hops) are performed per output symbol. The flexibility of the model allows us to apply it to tasks as diverse as (synthetic) question answering and to language modeling. For the former our approach is competitive with Memory Networks, but with less supervision. For the latter, on the Penn TreeBank and Text8 datasets our approach demonstrates comparable performance to RNNs and LSTMs. In both cases we show that the key concept of multiple computational hops yields improved results.