Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

Denton, Emily L., Chintala, Soumith, szlam, arthur, Fergus, Rob

Neural Information Processing Systems 

In this paper we introduce a generative model capable of producing high quality samples of natural images. Our approach uses a cascade of convolutional networks (convnets) within a Laplacian pyramid framework to generate images in a coarse-to-fine fashion. At each level of the pyramid a separate generative convnet model is trained using the Generative Adversarial Nets (GAN) approach. Samples drawn from our model are of significantly higher quality than existing models. In a quantitive assessment by human evaluators our CIFAR10 samples were mistaken for real images around 40% of the time, compared to 10% for GAN samples.