Goto

Collaborating Authors

 de Cooman, Gert


A decision-theoretic approach to dealing with uncertainty in quantum mechanics

arXiv.org Artificial Intelligence

We provide a decision-theoretic framework for dealing with uncertainty in quantum mechanics. This uncertainty is two-fold: on the one hand there may be uncertainty about the state the quantum system is in, and on the other hand, as is essential to quantum mechanical uncertainty, even if the quantum state is known, measurements may still produce an uncertain outcome. In our framework, measurements therefore play the role of acts with an uncertain outcome and our simple decision-theoretic postulates ensure that Born's rule is encapsulated in the utility functions associated with such acts. This approach allows us to uncouple (precise) probability theory from quantum mechanics, in the sense that it leaves room for a more general, so-called imprecise probabilities approach. We discuss the mathematical implications of our findings, which allow us to give a decision-theoretic foundation to recent seminal work by Benavoli, Facchini and Zaffalon, and we compare our approach to earlier and different approaches by Deutsch and Wallace.


Conditioning and AGM-like belief change in the Desirability-Indifference framework

arXiv.org Artificial Intelligence

We show how the AGM framework for belief change (expansion, revision, contraction) can be extended to deal with conditioning in the so-called Desirability-Indifference framework, based on abstract notions of accepting and rejecting options, as well as on abstract notions of events. This level of abstraction allows us to deal simultaneously with classical and quantum probability theory.


Conditioning through indifference in quantum mechanics

arXiv.org Artificial Intelligence

We can learn (more) about the state a quantum system is in through measurements. We look at how to describe the uncertainty about a quantum system's state conditional on executing such measurements. We show that by exploiting the interplay between desirability, coherence and indifference, a general rule for conditioning can be derived. We then apply this rule to conditioning on measurement outcomes, and show how it generalises to conditioning on a set of measurement outcomes.


The logic behind desirable sets of things, and its filter representation

arXiv.org Artificial Intelligence

We identify the logic behind the recent theory of coherent sets of desirable (sets of) things, which generalise desirable (sets of) gambles and coherent choice functions, and show that this identification allows us to establish various representation results for such coherent models in terms of simpler ones.


On a notion of independence proposed by Teddy Seidenfeld

arXiv.org Artificial Intelligence

Teddy Seidenfeld has been arguing for quite a long time that binary preference models are not powerful enough to deal with a number of crucial aspects of imprecision and indeterminacy in uncertain inference and decision making. It is at his insistence that we initiated our study of so-called sets of desirable option sets, which we have argued elsewhere provides an elegant and powerful approach to dealing with general, binary as well as non-binary, decision-making under uncertainty. We use this approach here to explore an interesting notion of irrelevance (and independence), first suggested by Seidenfeld in an example intended as a criticism of a number of specific decision methodologies based on (convex) binary preferences. We show that the consequences of making such an irrelevance or independence assessment are very strong, and might be used to argue for the use of so-called mixing choice functions, and E-admissibility as the resulting decision scheme.


Inference with Choice Functions Made Practical

arXiv.org Artificial Intelligence

We study how to infer new choices from previous choices in a conservative manner. To make such inferences, we use the theory of choice functions: a unifying mathematical framework for conservative decision making that allows one to impose axioms directly on the represented decisions. We here adopt the coherence axioms of De Bock and De Cooman (2019). We show how to naturally extend any given choice assessment to such a coherent choice function, whenever possible, and use this natural extension to make new choices. We present a practical algorithm to compute this natural extension and provide several methods that can be used to improve its scalability.


An alternative approach to coherent choice functions

arXiv.org Artificial Intelligence

Choice functions constitute a simple, direct and very general mathematical framework for modelling choice under uncertainty. In particular, they are able to represent the set-valued choices that appear in imprecise-probabilistic decision making. We provide these choice functions with a clear interpretation in terms of desirability, use this interpretation to derive a set of basic coherence axioms, and show that this notion of coherence leads to a representation in terms of sets of strict preference orders. By imposing additional properties such as totality, the mixing property and Archimedeanity, we obtain representation in terms of sets of strict total orders, lexicographic probability systems, coherent lower previsions or linear previsions.


A Desirability-Based Axiomatisation for Coherent Choice Functions

arXiv.org Artificial Intelligence

Choice functions constitute a simple, direct and very general mathematical framework for modelling choice under uncertainty. In particular, they are able to represent the set-valued choices that typically arise from applying decision rules to imprecise-probabilistic uncertainty models. We provide them with a clear interpretation in terms of attitudes towards gambling, borrowing ideas from the theory of sets of desirable gambles, and we use this interpretation to derive a set of basic axioms. We show that these axioms lead to a full-fledged theory of coherent choice functions, which includes a representation in terms of sets of desirable gambles, and a conservative inference method.


Sensitivity analysis for finite Markov chains in discrete time

arXiv.org Artificial Intelligence

When the initial and transition probabilities of a finite Markov chain in discrete time are not well known, we should perform a sensitivity analysis. This is done by considering as basic uncertainty models the so-called credal sets that these probabilities are known or believed to belong to, and by allowing the probabilities to vary over such sets. This leads to the definition of an imprecise Markov chain. We show that the time evolution of such a system can be studied very efficiently using so-called lower and upper expectations. We also study how the inferred credal set about the state at time n evolves as n->infinity: under quite unrestrictive conditions, it converges to a uniquely invariant credal set, regardless of the credal set given for the initial state. This leads to a non-trivial generalisation of the classical Perron-Frobenius Theorem to imprecise Markov chains.


Credal nets under epistemic irrelevance

arXiv.org Artificial Intelligence

We present a new approach to credal nets, which are graphical models that generalise Bayesian nets to imprecise probability. Instead of applying the commonly used notion of strong independence, we replace it by the weaker notion of epistemic irrelevance. We show how assessments of epistemic irrelevance allow us to construct a global model out of given local uncertainty models and mention some useful properties. The main results and proofs are presented using the language of sets of desirable gambles, which provides a very general and expressive way of representing imprecise probability models.