Goto

Collaborating Authors

 aurelio


Sparse Feature Learning for Deep Belief Networks

Neural Information Processing Systems

Unsupervised learning algorithms aim to discover the structure hidden in the data, and to learn representations that are more suitable as input to a supervised machine than the raw input. Many unsupervised methods are based on reconstructing the input from the representation, while constraining the representation to have certain desirable properties (e.g. Others are based on approximating density by stochastically reconstructing the input from the representation. We describe a novel and efficient algorithm to learn sparse representations, and compare it theoretically and experimentally with a similar machines trained probabilistically, namely a Restricted Boltzmann Machine. We propose a simple criterion to compare and select different unsupervised machines based on the trade-off between the reconstruction error and the information content of the representation.


Large Scale Distributed Deep Networks

Neural Information Processing Systems

Recent work in unsupervised feature learning and deep learning has shown that being able to train large models can dramatically improve performance. In this paper, we consider the problem of training a deep network with billions of parameters using tens of thousands of CPU cores. We have developed a software framework called DistBelief that can utilize computing clusters with thousands of machines to train large models. Within this framework, we have developed two algorithms for large-scale distributed training: (i) Downpour SGD, an asynchronous stochastic gradient descent procedure supporting a large number of model replicas, and (ii) Sandblaster, a framework that supports for a variety of distributed batch optimization procedures, including a distributed implementation of L-BFGS. Downpour SGD and Sandblaster L-BFGS both increase the scale and speed of deep network training. We have successfully used our system to train a deep network 100x larger than previously reported in the literature, and achieves state-of-the-art performance on ImageNet, a visual object recognition task with 16 million images and 21k categories. We show that these same techniques dramatically accelerate the training of a more modestly sized deep network for a commercial speech recognition service. Although we focus on and report performance of these methods as applied to training large neural networks, the underlying algorithms are applicable to any gradient-based machine learning algorithm.


Generating more realistic images using gated MRF's

Neural Information Processing Systems

Probabilistic models of natural images are usually evaluated by measuring performance on rather indirect tasks, such as denoising and inpainting. A more direct way to evaluate a generative model is to draw samples from it and to check whether statistical properties of the samples match the statistics of natural images. This method is seldom used with high-resolution images, because current models produce samples that are very different from natural images, as assessed by even simple visual inspection. We investigate the reasons for this failure and we show that by augmenting existing models so that there are two sets of latent variables, one set modelling pixel intensities and the other set modelling image-specific pixel covariances, we are able to generate high-resolution images that look much more realistic than before. The overall model can be interpreted as a gated MRF where both pair-wise dependencies and mean intensities of pixels are modulated by the states of latent variables. Finally, we confirm that if we disallow weight-sharing between receptive fields that overlap each other, the gated MRF learns more efficient internal representations, as demonstrated in several recognition tasks.


Phone Recognition with the Mean-Covariance Restricted Boltzmann Machine

Neural Information Processing Systems

Straightforward application of Deep Belief Nets (DBNs) to acoustic modeling produces a rich distributed representation of speech data that is useful for recognition and yields impressive results on the speaker-independent TIMIT phone recognition task. However, the first-layer Gaussian-Bernoulli Restricted Boltzmann Machine (GRBM) has an important limitation, shared with mixtures of diagonal-covariance Gaussians: GRBMs treat different components of the acoustic input vector as conditionally independent given the hidden state. The mean-covariance restricted Boltzmann machine (mcRBM), first introduced for modeling natural images, is a much more representationally efficient and powerful way of modeling the covariance structure of speech data. Every configuration of the precision units of the mcRBM specifies a different precision matrix for the conditional distribution over the acoustic space. In this work, we use the mcRBM to learn features of speech data that serve as input into a standard DBN. The mcRBM features combined with DBNs allow us to achieve a phone error rate of 20.5\%, which is superior to all published results on speaker-independent TIMIT to date.


Sparse Feature Learning for Deep Belief Networks

Neural Information Processing Systems

Unsupervised learning algorithms aim to discover the structure hidden in the data, and to learn representations that are more suitable as input to a supervised machine than the raw input. Many unsupervised methods are based on reconstructing the input from the representation, while constraining the representation to have certain desirable properties (e.g. low dimension, sparsity, etc). Others are based on approximating density by stochastically reconstructing the input from the representation. We describe a novel and efficient algorithm to learn sparse representations, and compare it theoretically and experimentally with a similar machines trained probabilistically, namely a Restricted Boltzmann Machine. We propose a simple criterion to compare and select different unsupervised machines based on the trade-off between the reconstruction error and the information content of the representation. We demonstrate this method by extracting features from a dataset of handwritten numerals, and from a dataset of natural image patches. We show that by stacking multiple levels of such machines and by training sequentially, high-order dependencies between the input variables can be captured.


Efficient Learning of Sparse Representations with an Energy-Based Model

Neural Information Processing Systems

We describe a novel unsupervised method for learning sparse, overcomplete features. Themodel uses a linear encoder, and a linear decoder preceded by a sparsifying non-linearitythat turns a code vector into a quasi-binary sparse code vector. Given an input, the optimal code minimizes the distance between the output of the decoder and the input patch while being as similar as possible to the encoder output.Learning proceeds in a two-phase EMlike fashion: (1) compute the minimum-energy code vector, (2) adjust the parameters of the encoder and decoder soas to decrease the energy. The model produces "stroke detectors" when trained on handwritten numerals, and Gabor-like filters when trained on natural image patches. Inference and learning are very fast, requiring no preprocessing, and no expensive sampling. Using the proposed unsupervised method to initialize the first layer of a convolutional network, we achieved an error rate slightly lower than the best reported result on the MNIST dataset. Finally, an extension of the method is described to learn topographical filter maps.