Sparse Feature Learning for Deep Belief Networks

Ranzato, Marc', aurelio, Boureau, Y-lan, Cun, Yann L.

Neural Information Processing Systems 

Unsupervised learning algorithms aim to discover the structure hidden in the data, and to learn representations that are more suitable as input to a supervised machine than the raw input. Many unsupervised methods are based on reconstructing the input from the representation, while constraining the representation to have certain desirable properties (e.g. Others are based on approximating density by stochastically reconstructing the input from the representation. We describe a novel and efficient algorithm to learn sparse representations, and compare it theoretically and experimentally with a similar machines trained probabilistically, namely a Restricted Boltzmann Machine. We propose a simple criterion to compare and select different unsupervised machines based on the trade-off between the reconstruction error and the information content of the representation.