Goto

Collaborating Authors

 Zou, Zhengxia


WSSM: Geographic-enhanced hierarchical state-space model for global station weather forecast

arXiv.org Artificial Intelligence

Global Station Weather Forecasting (GSWF), a prominent meteorological research area, is pivotal in providing timely localized weather predictions. Despite the progress existing models have made in the overall accuracy of the GSWF, executing high-precision extreme event prediction still presents a substantial challenge. The recent emergence of state-space models, with their ability to efficiently capture continuous-time dynamics and latent states, offer potential solutions. However, early investigations indicated that Mamba underperforms in the context of GSWF, suggesting further adaptation and optimization. To tackle this problem, in this paper, we introduce Weather State-space Model (WSSM), a novel Mamba-based approach tailored for GSWF. Geographical knowledge is integrated in addition to the widely-used positional encoding to represent the absolute special-temporal position. The multi-scale time-frequency features are synthesized from coarse to fine to model the seasonal to extreme weather dynamic. Our method effectively improves the overall prediction accuracy and addresses the challenge of forecasting extreme weather events. The state-of-the-art results obtained on the Weather-5K subset underscore the efficacy of the WSSM


Learning to detect cloud and snow in remote sensing images from noisy labels

arXiv.org Artificial Intelligence

Detecting clouds and snow in remote sensing images is an essential preprocessing task for remote sensing imagery. Previous works draw inspiration from semantic segmentation models in computer vision, with most research focusing on improving model architectures to enhance detection performance. However, unlike natural images, the complexity of scenes and the diversity of cloud types in remote sensing images result in many inaccurate labels in cloud and snow detection datasets, introducing unnecessary noises into the training and testing processes. By constructing a new dataset and proposing a novel training strategy with the curriculum learning paradigm, we guide the model in reducing overfitting to noisy labels. Additionally, we design a more appropriate model performance evaluation method, that alleviates the performance assessment bias caused by noisy labels. By conducting experiments on models with UNet and Segformer, we have validated the effectiveness of our proposed method. This paper is the first to consider the impact of label noise on the detection of clouds and snow in remote sensing images.


DeepPhysiNet: Bridging Deep Learning and Atmospheric Physics for Accurate and Continuous Weather Modeling

arXiv.org Artificial Intelligence

Accurate weather forecasting holds significant importance to human activities. Currently, there are two paradigms for weather forecasting: Numerical Weather Prediction (NWP) and Deep Learning-based Prediction (DLP). NWP utilizes atmospheric physics for weather modeling but suffers from poor data utilization and high computational costs, while DLP can learn weather patterns from vast amounts of data directly but struggles to incorporate physical laws. Both paradigms possess their respective strengths and weaknesses, and are incompatible, because physical laws adopted in NWP describe the relationship between coordinates and meteorological variables, while DLP directly learns the relationships between meteorological variables without consideration of coordinates. To address these problems, we introduce the DeepPhysiNet framework, incorporating physical laws into deep learning models for accurate and continuous weather system modeling. First, we construct physics networks based on multilayer perceptrons (MLPs) for individual meteorological variable, such as temperature, pressure, and wind speed. Physics networks establish relationships between variables and coordinates by taking coordinates as input and producing variable values as output. The physical laws in the form of Partial Differential Equations (PDEs) can be incorporated as a part of loss function. Next, we construct hyper-networks based on deep learning methods to directly learn weather patterns from a large amount of meteorological data. The output of hyper-networks constitutes a part of the weights for the physics networks. Experimental results demonstrate that, upon successful integration of physical laws, DeepPhysiNet can accomplish multiple tasks simultaneously, not only enhancing forecast accuracy but also obtaining continuous spatiotemporal resolution results, which is unattainable by either the NWP or DLP.


MSight: An Edge-Cloud Infrastructure-based Perception System for Connected Automated Vehicles

arXiv.org Artificial Intelligence

As vehicular communication and networking technologies continue to advance, infrastructure-based roadside perception emerges as a pivotal tool for connected automated vehicle (CAV) applications. Due to their elevated positioning, roadside sensors, including cameras and lidars, often enjoy unobstructed views with diminished object occlusion. This provides them a distinct advantage over onboard perception, enabling more robust and accurate detection of road objects. This paper presents MSight, a cutting-edge roadside perception system specifically designed for CAVs. MSight offers real-time vehicle detection, localization, tracking, and short-term trajectory prediction. Evaluations underscore the system's capability to uphold lane-level accuracy with minimal latency, revealing a range of potential applications to enhance CAV safety and efficiency. Presently, MSight operates 24/7 at a two-lane roundabout in the City of Ann Arbor, Michigan.


Robust Roadside Perception for Autonomous Driving: an Annotation-free Strategy with Synthesized Data

arXiv.org Artificial Intelligence

Recently, with the rapid development in vehicle-to-infrastructure communication technologies, the infrastructure-based, roadside perception system for cooperative driving has become a rising field. This paper focuses on one of the most critical challenges - the data-insufficiency problem. The lacking of high-quality labeled roadside sensor data with high diversity leads to low robustness, and low transfer-ability of current roadside perception systems. In this paper, a novel approach is proposed to address this problem by creating synthesized training data using Augmented Reality and Generative Adversarial Network. This method creates synthesized dataset that is capable of training or fine-tuning a roadside perception detector which is robust to different weather and lighting conditions, or to adapt a new deployment location. We validate our approach at two intersections: Mcity intersection and State St/Ellsworth Rd roundabout. Our experiments show that (1) the detector can achieve good performance in all conditions when trained on synthesized data only, and (2) the performance of an existing detector trained with labeled data can be enhanced by synthesized data in harsh conditions.


Implicit Ray-Transformers for Multi-view Remote Sensing Image Segmentation

arXiv.org Artificial Intelligence

The mainstream CNN-based remote sensing (RS) image semantic segmentation approaches typically rely on massive labeled training data. Such a paradigm struggles with the problem of RS multi-view scene segmentation with limited labeled views due to the lack of considering 3D information within the scene. In this paper, we propose ''Implicit Ray-Transformer (IRT)'' based on Implicit Neural Representation (INR), for RS scene semantic segmentation with sparse labels (such as 4-6 labels per 100 images). We explore a new way of introducing multi-view 3D structure priors to the task for accurate and view-consistent semantic segmentation. The proposed method includes a two-stage learning process. In the first stage, we optimize a neural field to encode the color and 3D structure of the remote sensing scene based on multi-view images. In the second stage, we design a Ray Transformer to leverage the relations between the neural field 3D features and 2D texture features for learning better semantic representations. Different from previous methods that only consider 3D prior or 2D features, we incorporate additional 2D texture information and 3D prior by broadcasting CNN features to different point features along the sampled ray. To verify the effectiveness of the proposed method, we construct a challenging dataset containing six synthetic sub-datasets collected from the Carla platform and three real sub-datasets from Google Maps. Experiments show that the proposed method outperforms the CNN-based methods and the state-of-the-art INR-based segmentation methods in quantitative and qualitative metrics.


MeInGame: Create a Game Character Face from a Single Portrait

arXiv.org Artificial Intelligence

Many deep learning based 3D face reconstruction methods have been proposed recently, however, few of them have applications in games. Current game character customization systems either require players to manually adjust considerable face attributes to obtain the desired face, or have limited freedom of facial shape and texture. In this paper, we propose an automatic character face creation method that predicts both facial shape and texture from a single portrait, and it can be integrated into most existing 3D games. Although 3D Morphable Face Model (3DMM) based methods can restore accurate 3D faces from single images, the topology of 3DMM mesh is different from the meshes used in most games. To acquire fidelity texture, existing methods require a large amount of face texture data for training, while building such datasets is time-consuming and laborious. Besides, such a dataset collected under laboratory conditions may not generalized well to in-the-wild situations. To tackle these problems, we propose 1) a low-cost facial texture acquisition method, 2) a shape transfer algorithm that can transform the shape of a 3DMM mesh to games, and 3) a new pipeline for training 3D game face reconstruction networks. The proposed method not only can produce detailed and vivid game characters similar to the input portrait, but can also eliminate the influence of lighting and occlusions. Experiments show that our method outperforms state-of-the-art methods used in games.