Goto

Collaborating Authors

 Zou, Wei


Extend Adversarial Policy Against Neural Machine Translation via Unknown Token

arXiv.org Artificial Intelligence

Generating adversarial examples contributes to mainstream neural machine translation~(NMT) robustness. However, popular adversarial policies are apt for fixed tokenization, hindering its efficacy for common character perturbations involving versatile tokenization. Based on existing adversarial generation via reinforcement learning~(RL), we propose the `DexChar policy' that introduces character perturbations for the existing mainstream adversarial policy based on token substitution. Furthermore, we improve the self-supervised matching that provides feedback in RL to cater to the semantic constraints required during training adversaries. Experiments show that our method is compatible with the scenario where baseline adversaries fail, and can generate high-efficiency adversarial examples for analysis and optimization of the system.


C3oT: Generating Shorter Chain-of-Thought without Compromising Effectiveness

arXiv.org Artificial Intelligence

Generating Chain-of-Thought (CoT) before deriving the answer can effectively improve the reasoning capabilities of large language models (LLMs) and significantly improve the accuracy of the generated answer. However, in most cases, the length of the generated CoT is much longer than the desired final answer, which results in additional decoding costs. Furthermore, existing research has discovered that shortening the reasoning steps in CoT, even while preserving the key information, diminishes LLMs' abilities. These phenomena make it difficult to use LLMs and CoT in many real-world applications that only require the final answer and are sensitive to latency, such as search and recommendation. To reduce the costs of model decoding and shorten the length of the generated CoT, this paper presents $\textbf{C}$onditioned $\textbf{C}$ompressed $\textbf{C}$hain-of-$\textbf{T}$hought (C3oT), a CoT compression framework that involves a compressor to compress an original longer CoT into a shorter CoT while maintaining key information and interpretability, a conditioned training method to train LLMs with both longer CoT and shorter CoT simultaneously to learn the corresponding relationships between them, and a conditioned inference method to gain the reasoning ability learned from longer CoT by generating shorter CoT. We conduct experiments over four datasets from arithmetic and commonsense scenarios, showing that the proposed method is capable of compressing the length of generated CoT by up to more than 50% without compromising its effectiveness.


Advancing Speech Language Models by Scaling Supervised Fine-Tuning with Over 60,000 Hours of Synthetic Speech Dialogue Data

arXiv.org Artificial Intelligence

The GPT-4o represents a significant milestone in enabling real-time interaction with large language models (LLMs) through speech, its remarkable low latency and high fluency not only capture attention but also stimulate research interest in the field. This real-time speech interaction is particularly valuable in scenarios requiring rapid feedback and immediate responses, dramatically enhancing user experience. However, there is a notable lack of research focused on real-time large speech language models, particularly for Chinese. In this work, we present KE-Omni, a seamless large speech language model built upon Ke-SpeechChat, a large-scale high-quality synthetic speech interaction dataset consisting of 7 million Chinese and English conversations, featuring 42,002 speakers, and totaling over 60,000 hours, This contributes significantly to the advancement of research and development in this field. The demos can be accessed at \url{https://huggingface.co/spaces/KE-Team/KE-Omni}.


Why Not Transform Chat Large Language Models to Non-English?

arXiv.org Artificial Intelligence

The scarcity of non-English data limits the development of non-English large language models (LLMs). Transforming English-centric LLMs to non-English has been identified as an effective and resource-efficient method. Previous works start from base LLMs and perform knowledge distillation (KD) with data generated by stronger LLMs, e.g. GPT-4. Compared to base LLMs, chat LLMs are further optimized for advanced abilities, e.g. multi-turn conversation and human preference alignment, and thus more powerful in both helpfulness and safety. However, transforming a chat LLM involves two critical issues: (1) How can we effectively transfer advanced abilities without their supervised data? (2) How can we prevent the original knowledge from catastrophic forgetting during transformation? We target these issues by introducing a simple framework called TransLLM. For the first issue, TransLLM divides the transfer problem into some common sub-tasks with the translation chain-of-thought, which uses the translation as the bridge between English and non-English step-by-step. We further enhance the performance of sub-tasks with publicly available data. For the second issue, we propose a method comprising two synergistic components: low-rank adaptation for training to maintain the original LLM parameters, and recovery KD, which utilizes data generated by the chat LLM itself to recover the original knowledge from the frozen parameters. In the experiments, we transform the LLaMA-2-chat-7B to the Thai language. Our method, using only single-turn data, outperforms strong baselines and ChatGPT on multi-turn benchmark MT-bench. Furthermore, our method, without safety data, rejects more harmful queries of safety benchmark AdvBench than both ChatGPT and GPT-4.


Enforcing Paraphrase Generation via Controllable Latent Diffusion

arXiv.org Artificial Intelligence

Paraphrase generation aims to produce high-quality and diverse utterances of a given text. Though state-of-the-art generation via the diffusion model reconciles generation quality and diversity, textual diffusion suffers from a truncation issue that hinders efficiency and quality control. In this work, we propose \textit{L}atent \textit{D}iffusion \textit{P}araphraser~(LDP), a novel paraphrase generation by modeling a controllable diffusion process given a learned latent space. LDP achieves superior generation efficiency compared to its diffusion counterparts. It facilitates only input segments to enforce paraphrase semantics, which further improves the results without external features. Experiments show that LDP achieves improved and diverse paraphrase generation compared to baselines. Further analysis shows that our method is also helpful to other similar text generations and domain adaptations. Our code and data are available at https://github.com/NIL-zhuang/ld4pg.


Dual Mean-Teacher: An Unbiased Semi-Supervised Framework for Audio-Visual Source Localization

arXiv.org Artificial Intelligence

Audio-Visual Source Localization (AVSL) aims to locate sounding objects within video frames given the paired audio clips. Existing methods predominantly rely on self-supervised contrastive learning of audio-visual correspondence. Without any bounding-box annotations, they struggle to achieve precise localization, especially for small objects, and suffer from blurry boundaries and false positives. Moreover, the naive semi-supervised method is poor in fully leveraging the information of abundant unlabeled data. In this paper, we propose a novel semi-supervised learning framework for AVSL, namely Dual Mean-Teacher (DMT), comprising two teacher-student structures to circumvent the confirmation bias issue. Specifically, two teachers, pre-trained on limited labeled data, are employed to filter out noisy samples via the consensus between their predictions, and then generate high-quality pseudo-labels by intersecting their confidence maps. The sufficient utilization of both labeled and unlabeled data and the proposed unbiased framework enable DMT to outperform current state-of-the-art methods by a large margin, with CIoU of 90.4% and 48.8% on Flickr-SoundNet and VGG-Sound Source, obtaining 8.9%, 9.6% and 4.6%, 6.4% improvements over self- and semi-supervised methods respectively, given only 3% positional-annotations. We also extend our framework to some existing AVSL methods and consistently boost their performance.


PoisonedRAG: Knowledge Poisoning Attacks to Retrieval-Augmented Generation of Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have achieved remarkable success due to their exceptional generative capabilities. Despite their success, they also have inherent limitations such as a lack of up-to-date knowledge and hallucination. Retrieval-Augmented Generation (RAG) is a state-of-the-art technique to mitigate those limitations. In particular, given a question, RAG retrieves relevant knowledge from a knowledge database to augment the input of the LLM. For instance, the retrieved knowledge could be a set of top-k texts that are most semantically similar to the given question when the knowledge database contains millions of texts collected from Wikipedia. As a result, the LLM could utilize the retrieved knowledge as the context to generate an answer for the given question. Existing studies mainly focus on improving the accuracy or efficiency of RAG, leaving its security largely unexplored. We aim to bridge the gap in this work. Particularly, we propose PoisonedRAG , a set of knowledge poisoning attacks to RAG, where an attacker could inject a few poisoned texts into the knowledge database such that the LLM generates an attacker-chosen target answer for an attacker-chosen target question. We formulate knowledge poisoning attacks as an optimization problem, whose solution is a set of poisoned texts. Depending on the background knowledge (e.g., black-box and white-box settings) of an attacker on the RAG, we propose two solutions to solve the optimization problem, respectively. Our results on multiple benchmark datasets and LLMs show our attacks could achieve 90% attack success rates when injecting 5 poisoned texts for each target question into a database with millions of texts. We also evaluate recent defenses and our results show they are insufficient to defend against our attacks, highlighting the need for new defenses.


From LLM to Conversational Agent: A Memory Enhanced Architecture with Fine-Tuning of Large Language Models

arXiv.org Artificial Intelligence

RAISE, an enhancement exhibit high levels of performance in isolated of the ReAct framework, incorporates a tasks, creating an agent that can sustain coherent, dual-component memory system, mirroring context-aware, and purpose-driven conversations human short-term and long-term memory, remains an intricate endeavor. The need for to maintain context and continuity a more sophisticated framework that leverages the in conversations. It entails a comprehensive strengths of LLMs while addressing their limitations agent construction scenario, including in conversational settings has become increasingly phases like Conversation Selection, apparent. Scene Extraction, CoT Completion, and In response to this need, we introduce the Scene Augmentation, leading to the LLMs RAISE (Reasoning and Acting through Scratchpad Training phase. This approach appears to and Examples) architecture. RAISE represents enhance agent controllability and adaptability a refined enhancement of the existing Rein complex, multi-turn dialogues. Act(Yao et al., 2023) framework, specifically designed Our preliminary evaluations in a real estate to augment the capabilities of conversational sales context suggest that RAISE has agents. This paper presents a detailed exploration some advantages over traditional agents, of RAISE, highlighting its unique components indicating its potential for broader applications.


MAPO: Advancing Multilingual Reasoning through Multilingual Alignment-as-Preference Optimization

arXiv.org Artificial Intelligence

Though reasoning abilities are considered language-agnostic, existing LLMs exhibit inconsistent reasoning abilities across different languages, e.g., reasoning in a pivot language is superior to other languages due to the imbalance of multilingual training data.To enhance reasoning abilities in non-pivot languages, we propose an alignment-as-preference optimization framework. Specifically, we adopt an open-source translation model to estimate the consistency between answers in non-pivot and pivot languages. We further adopt the answer consistency as the preference for DPO or PPO thus optimizing the lesser reasoning. Experiments show that our method significantly improves the model's multilingual reasoning, with better reasoning consistency across languages. Our framework achieved a 13.7% accuracy improvement on out-of-domain datasets MSVAMP while preserving the competitive performance on MGSM. Moreover, we find that iterative DPO is helpful for further alignment and improvement of the model's multilingual mathematical reasoning ability, further pushing the improvement to 16.7%


DUMA: a Dual-Mind Conversational Agent with Fast and Slow Thinking

arXiv.org Artificial Intelligence

Inspired by the dual-process theory of human cognition, we introduce DUMA, a novel conversational agent framework that embodies a dual-mind mechanism through the utilization of two generative Large Language Models (LLMs) dedicated to fast and slow thinking respectively. The fast thinking model serves as the primary interface for external interactions and initial response generation, evaluating the necessity for engaging the slow thinking model based on the complexity of the complete response. When invoked, the slow thinking model takes over the conversation, engaging in meticulous planning, reasoning, and tool utilization to provide a well-analyzed response. This dual-mind configuration allows for a seamless transition between intuitive responses and deliberate problem-solving processes based on the situation. We have constructed a conversational agent to handle online inquiries in the real estate industry. The experiment proves that our method balances effectiveness and efficiency, and has a significant improvement compared to the baseline.