Zisserman, Andrew
New keypoint-based approach for recognising British Sign Language (BSL) from sequences
Deb, Oishi, Prajwal, KR, Zisserman, Andrew
In this paper, we present a novel keypoint-based classification model designed to recognise British Sign Language (BSL) words within continuous signing sequences. Our model's performance is assessed using the BOBSL dataset, revealing that the keypoint-based approach surpasses its RGB-based counterpart in computational efficiency and memory usage. Furthermore, it offers expedited training times and demands fewer computational resources. To the best of our knowledge, this is the inaugural application of a keypoint-based model for BSL word classification, rendering direct comparisons with existing works unavailable.
Scaling 4D Representations
Carreira, João, Gokay, Dilara, King, Michael, Zhang, Chuhan, Rocco, Ignacio, Mahendran, Aravindh, Keck, Thomas Albert, Heyward, Joseph, Koppula, Skanda, Pot, Etienne, Erdogan, Goker, Hasson, Yana, Yang, Yi, Greff, Klaus, Moing, Guillaume Le, van Steenkiste, Sjoerd, Zoran, Daniel, Hudson, Drew A., Vélez, Pedro, Polanía, Luisa, Friedman, Luke, Duvarney, Chris, Goroshin, Ross, Allen, Kelsey, Walker, Jacob, Kabra, Rishabh, Aboussouan, Eric, Sun, Jennifer, Kipf, Thomas, Doersch, Carl, Pătrăucean, Viorica, Damen, Dima, Luc, Pauline, Sajjadi, Mehdi S. M., Zisserman, Andrew
Scaling has not yet been convincingly demonstrated for pure self-supervised learning from video. However, prior work has focused evaluations on semantic-related tasks $\unicode{x2013}$ action classification, ImageNet classification, etc. In this paper we focus on evaluating self-supervised learning on non-semantic vision tasks that are more spatial (3D) and temporal (+1D = 4D), such as camera pose estimation, point and object tracking, and depth estimation. We show that by learning from very large video datasets, masked auto-encoding (MAE) with transformer video models actually scales, consistently improving performance on these 4D tasks, as model size increases from 20M all the way to the largest by far reported self-supervised video model $\unicode{x2013}$ 22B parameters. Rigorous apples-to-apples comparison with many recent image and video models demonstrates the benefits of scaling 4D representations.
Perception Test 2024: Challenge Summary and a Novel Hour-Long VideoQA Benchmark
Heyward, Joseph, Carreira, João, Damen, Dima, Zisserman, Andrew, Pătrăucean, Viorica
This year, the challenge had seven tracks (up from six last year) and covered low-level and high-level tasks, with language and non-language interfaces, across video, audio, and text modalities; the additional track covered hour-long video understanding and introduced a novel video QA benchmark 1h-walk VQA. Overall, the tasks in the different tracks were: object tracking, point tracking, temporal action localisation, temporal sound localisation, multiple-choice video question-answering, grounded video question-answering, and hour-long video question-answering. We summarise in this report the challenge tasks and results, and introduce in detail the novel hour-long video QA benchmark 1h-walk VQA.
A Short Note on Evaluating RepNet for Temporal Repetition Counting in Videos
Dwibedi, Debidatta, Aytar, Yusuf, Tompson, Jonathan, Sermanet, Pierre, Zisserman, Andrew
We discuss some consistent issues on how RepNet has been evaluated in various papers. As a way to mitigate these issues, we report RepNet performance results on different datasets, and release evaluation code and the RepNet checkpoint to obtain these results. Code URL: https://github.com/google-research/google-research/blob/master/repnet/
Automated Spinal MRI Labelling from Reports Using a Large Language Model
Park, Robin Y., Windsor, Rhydian, Jamaludin, Amir, Zisserman, Andrew
We propose a general pipeline to automate the extraction of labels from radiology reports using large language models, which we validate on spinal MRI reports. The efficacy of our labelling method is measured on five distinct conditions: spinal cancer, stenosis, spondylolisthesis, cauda equina compression and herniation. Using open-source models, our method equals or surpasses GPT-4 on a held-out set of reports. Furthermore, we show that the extracted labels can be used to train imaging models to classify the identified conditions in the accompanying MR scans. All classifiers trained using automated labels achieve comparable performance to models trained using scans manually annotated by clinicians. Code can be found at https://github.com/robinyjpark/AutoLabelClassifier.
Character-aware audio-visual subtitling in context
Huh, Jaesung, Zisserman, Andrew
This paper presents an improved framework for character-aware audio-visual subtitling in TV shows. Our approach integrates speech recognition, speaker diarisation, and character recognition, utilising both audio and visual cues. This holistic solution addresses what is said, when it's said, and who is speaking, providing a more comprehensive and accurate character-aware subtitling for TV shows. Our approach brings improvements on two fronts: first, we show that audio-visual synchronisation can be used to pick out the talking face amongst others present in a video clip, and assign an identity to the corresponding speech segment. This audio-visual approach improves recognition accuracy and yield over current methods. Second, we show that the speaker of short segments can be determined by using the temporal context of the dialogue within a scene. We propose an approach using local voice embeddings of the audio, and large language model reasoning on the text transcription. This overcomes a limitation of existing methods that they are unable to accurately assign speakers to short temporal segments. We validate the method on a dataset with 12 TV shows, demonstrating superior performance in speaker diarisation and character recognition accuracy compared to existing approaches. Project page : https://www.robots.ox.ac.uk/~vgg/research/llr-context/
The VoxCeleb Speaker Recognition Challenge: A Retrospective
Huh, Jaesung, Chung, Joon Son, Nagrani, Arsha, Brown, Andrew, Jung, Jee-weon, Garcia-Romero, Daniel, Zisserman, Andrew
The VoxCeleb Speaker Recognition Challenges (VoxSRC) were a series of challenges and workshops that ran annually from 2019 to 2023. The challenges primarily evaluated the tasks of speaker recognition and diarisation under various settings including: closed and open training data; as well as supervised, self-supervised, and semi-supervised training for domain adaptation. The challenges also provided publicly available training and evaluation datasets for each task and setting, with new test sets released each year. In this paper, we provide a review of these challenges that covers: what they explored; the methods developed by the challenge participants and how these evolved; and also the current state of the field for speaker verification and diarisation. We chart the progress in performance over the five installments of the challenge on a common evaluation dataset and provide a detailed analysis of how each year's special focus affected participants' performance. This paper is aimed both at researchers who want an overview of the speaker recognition and diarisation field, and also at challenge organisers who want to benefit from the successes and avoid the mistakes of the VoxSRC challenges. We end with a discussion of the current strengths of the field and open challenges. Project page : https://mm.kaist.ac.kr/datasets/voxceleb/voxsrc/workshop.html
TAPVid-3D: A Benchmark for Tracking Any Point in 3D
Koppula, Skanda, Rocco, Ignacio, Yang, Yi, Heyward, Joe, Carreira, João, Zisserman, Andrew, Brostow, Gabriel, Doersch, Carl
We introduce a new benchmark, TAPVid-3D, for evaluating the task of long-range Tracking Any Point in 3D (TAP-3D). While point tracking in two dimensions (TAP) has many benchmarks measuring performance on real-world videos, such as TAPVid-DAVIS, three-dimensional point tracking has none. To this end, leveraging existing footage, we build a new benchmark for 3D point tracking featuring 4,000+ real-world videos, composed of three different data sources spanning a variety of object types, motion patterns, and indoor and outdoor environments. To measure performance on the TAP-3D task, we formulate a collection of metrics that extend the Jaccard-based metric used in TAP to handle the complexities of ambiguous depth scales across models, occlusions, and multi-track spatio-temporal smoothness. We manually verify a large sample of trajectories to ensure correct video annotations, and assess the current state of the TAP-3D task by constructing competitive baselines using existing tracking models. We anticipate this benchmark will serve as a guidepost to improve our ability to understand precise 3D motion and surface deformation from monocular video. Code for dataset download, generation, and model evaluation is available at https://tapvid3d.github.io/.
Separating the "Chirp" from the "Chat": Self-supervised Visual Grounding of Sound and Language
Hamilton, Mark, Zisserman, Andrew, Hershey, John R., Freeman, William T.
We present DenseAV, a novel dual encoder grounding architecture that learns high-resolution, semantically meaningful, and audio-visually aligned features solely through watching videos. We show that DenseAV can discover the ``meaning'' of words and the ``location'' of sounds without explicit localization supervision. Furthermore, it automatically discovers and distinguishes between these two types of associations without supervision. We show that DenseAV's localization abilities arise from a new multi-head feature aggregation operator that directly compares dense image and audio representations for contrastive learning. In contrast, many other systems that learn ``global'' audio and video representations cannot localize words and sound. Finally, we contribute two new datasets to improve the evaluation of AV representations through speech and sound prompted semantic segmentation. On these and other datasets we show DenseAV dramatically outperforms the prior art on speech and sound prompted semantic segmentation. DenseAV outperforms the previous state-of-the-art, ImageBind, on cross-modal retrieval using fewer than half of the parameters. Project Page: \href{https://aka.ms/denseav}{https://aka.ms/denseav}
A Tale of Two Languages: Large-Vocabulary Continuous Sign Language Recognition from Spoken Language Supervision
Raude, Charles, Prajwal, K R, Momeni, Liliane, Bull, Hannah, Albanie, Samuel, Zisserman, Andrew, Varol, Gül
In this work, our goals are two fold: large-vocabulary continuous sign language recognition (CSLR), and sign language retrieval. To this end, we introduce a multi-task Transformer model, CSLR2, that is able to ingest a signing sequence and output in a joint embedding space between signed language and spoken language text. To enable CSLR evaluation in the large-vocabulary setting, we introduce new dataset annotations that have been manually collected. These provide continuous sign-level annotations for six hours of test videos, and will be made publicly available. We demonstrate that by a careful choice of loss functions, training the model for both the CSLR and retrieval tasks is mutually beneficial in terms of performance -- retrieval improves CSLR performance by providing context, while CSLR improves retrieval with more fine-grained supervision. We further show the benefits of leveraging weak and noisy supervision from large-vocabulary datasets such as BOBSL, namely sign-level pseudo-labels, and English subtitles. Our model significantly outperforms the previous state of the art on both tasks.