Goto

Collaborating Authors

 Zipperling, Domenique


Implications of the AI Act for Non-Discrimination Law and Algorithmic Fairness

arXiv.org Artificial Intelligence

The topic of fairness in AI, as debated in the FATE (Fairness, Accountability, Transparency, and Ethics in AI) communities, has sparked meaningful discussions in the past years. However, from a legal perspective, particularly from the perspective of European Union law, many open questions remain. Whereas algorithmic fairness aims to mitigate structural inequalities at design-level, European non-discrimination law is tailored to individual cases of discrimination after an AI model has been deployed. The AI Act might present a tremendous step towards bridging these two approaches by shifting non-discrimination responsibilities into the design stage of AI models. Based on an integrative reading of the AI Act, we comment on legal as well as technical enforcement problems and propose practical implications on bias detection and bias correction in order to specify and comply with specific technical requirements.


CollaFuse: Collaborative Diffusion Models

arXiv.org Artificial Intelligence

In the landscape of generative artificial intelligence, diffusion-based models have emerged as a promising method for generating synthetic images. However, the application of diffusion models poses numerous challenges, particularly concerning data availability, computational requirements, and privacy. Traditional approaches to address these shortcomings, like federated learning, often impose significant computational burdens on individual clients, especially those with constrained resources. In response to these challenges, we introduce a novel approach for distributed collaborative diffusion models inspired by split learning. Our approach facilitates collaborative training of diffusion models while alleviating client computational burdens during image synthesis. This reduced computational burden is achieved by retaining data and computationally inexpensive processes locally at each client while outsourcing the computationally expensive processes to shared, more efficient server resources. Through experiments on the common CelebA dataset, our approach demonstrates enhanced privacy by reducing the necessity for sharing raw data. These capabilities hold significant potential across various application areas, including the design of edge computing solutions. Thus, our work advances distributed machine learning by contributing to the evolution of collaborative diffusion models.


CollaFuse: Navigating Limited Resources and Privacy in Collaborative Generative AI

arXiv.org Artificial Intelligence

In the landscape of generative artificial intelligence, diffusion-based models present challenges for socio-technical systems in data requirements and privacy. Traditional approaches like federated learning distribute the learning process but strain individual clients, especially with constrained resources (e.g., edge devices). In response to these challenges, we introduce CollaFuse, a novel framework inspired by split learning. Tailored for efficient and collaborative use of denoising diffusion probabilistic models, CollaFuse enables shared server training and inference, alleviating client computational burdens. This is achieved by retaining data and computationally inexpensive GPU processes locally at each client while outsourcing the computationally expensive processes to the shared server. Demonstrated in a healthcare context, CollaFuse enhances privacy by highly reducing the need for sensitive information sharing. These capabilities hold the potential to impact various application areas, such as the design of edge computing solutions, healthcare research, or autonomous driving. In essence, our work advances distributed machine learning, shaping the future of collaborative GenAI networks.