Goto

Collaborating Authors

 Ziesche, Hanna


Category-Agnostic 6D Pose Estimation with Conditional Neural Processes

arXiv.org Artificial Intelligence

We present a novel meta-learning approach for 6D pose estimation on unknown objects. In contrast to ``instance-level" and ``category-level" pose estimation methods, our algorithm learns object representation in a category-agnostic way, which endows it with strong generalization capabilities across object categories. Specifically, we employ a neural process-based meta-learning approach to train an encoder to capture texture and geometry of an object in a latent representation, based on very few RGB-D images and ground-truth keypoints. The latent representation is then used by a simultaneously meta-trained decoder to predict the 6D pose of the object in new images. Furthermore, we propose a novel geometry-aware decoder for the keypoint prediction using a Graph Neural Network (GNN), which explicitly takes geometric constraints specific to each object into consideration. To evaluate our algorithm, extensive experiments are conducted on the \linemod dataset, and on our new fully-annotated synthetic datasets generated from Multiple Categories in Multiple Scenes (MCMS). Experimental results demonstrate that our model performs well on unseen objects with very different shapes and appearances. Remarkably, our model also shows robust performance on occluded scenes although trained fully on data without occlusion. To our knowledge, this is the first work exploring \textbf{cross-category level} 6D pose estimation.


Uncertainty-driven Exploration Strategies for Online Grasp Learning

arXiv.org Artificial Intelligence

Existing grasp prediction approaches are mostly based on offline learning, while, ignored the exploratory grasp learning during online adaptation to new picking scenarios, i.e., unseen object portfolio, camera and bin settings etc. In this paper, we present a novel method for online learning of grasp predictions for robotic bin picking in a principled way. Existing grasp prediction approaches are mostly based on offline learning, while, ignored the exploratory grasp learning during online adaptation to new picking scenarios, i.e., unseen object portfolio, camera and bin settings etc. In this paper, we present a novel method for online learning of grasp predictions for robotic bin picking in a principled way. Specifically, the online learning algorithm with an effective exploration strategy can significantly improve its adaptation performance to unseen environment settings. To this end, we first propose to formulate online grasp learning as a RL problem that will allow to adapt both grasp reward prediction and grasp poses. We propose various uncertainty estimation schemes based on Bayesian Uncertainty Quantification and Distributional Ensembles. We carry out evaluations on real-world bin picking scenes of varying difficulty. The objects in the bin have various challenging physical and perceptual characteristics that can be characterized by semi- or total transparency, and irregular or curved surfaces. The results of our experiments demonstrate a notable improvement in the suggested approach compared to conventional online learning methods which incorporate only naive exploration strategies.


Meta-Learning Regrasping Strategies for Physical-Agnostic Objects

arXiv.org Artificial Intelligence

Grasping inhomogeneous objects in real-world applications remains a challenging task due to the unknown physical properties such as mass distribution and coefficient of friction. In this study, we propose a meta-learning algorithm called ConDex, which incorporates Conditional Neural Processes (CNP) with DexNet-2.0 to autonomously discern the underlying physical properties of objects using depth images. ConDex efficiently acquires physical embeddings from limited trials, enabling precise grasping point estimation. Furthermore, ConDex is capable of updating the predicted grasping quality iteratively from new trials in an online fashion. To the best of our knowledge, we are the first who generate two object datasets focusing on inhomogeneous physical properties with varying mass distributions and friction coefficients. Extensive evaluations in simulation demonstrate ConDex's superior performance over DexNet-2.0 and existing meta-learning-based grasping pipelines. Furthermore, ConDex shows robust generalization to previously unseen real-world objects despite training solely in the simulation. The synthetic and real-world datasets will be published as well.


SA6D: Self-Adaptive Few-Shot 6D Pose Estimator for Novel and Occluded Objects

arXiv.org Artificial Intelligence

To enable meaningful robotic manipulation of objects in the real-world, 6D pose estimation is one of the critical aspects. Most existing approaches have difficulties to extend predictions to scenarios where novel object instances are continuously introduced, especially with heavy occlusions. In this work, we propose a few-shot pose estimation (FSPE) approach called SA6D, which uses a self-adaptive segmentation module to identify the novel target object and construct a point cloud model of the target object using only a small number of cluttered reference images. Unlike existing methods, SA6D does not require object-centric reference images or any additional object information, making it a more generalizable and scalable solution across categories. We evaluate SA6D on real-world tabletop object datasets and demonstrate that SA6D outperforms existing FSPE methods, particularly in cluttered scenes with occlusions, while requiring fewer reference images.


Model-free Grasping with Multi-Suction Cup Grippers for Robotic Bin Picking

arXiv.org Artificial Intelligence

This paper presents a novel method for model-free prediction of grasp poses for suction grippers with multiple suction cups. Our approach is agnostic to the design of the gripper and does not require gripper-specific training data. In particular, we propose a two-step approach, where first, a neural network predicts pixel-wise grasp quality for an input image to indicate areas that are generally graspable. Second, an optimization step determines the optimal gripper selection and corresponding grasp poses based on configured gripper layouts and activation schemes. In addition, we introduce a method for automated labeling for supervised training of the grasp quality network. Experimental evaluations on a real-world industrial application with bin picking scenes of varying difficulty demonstrate the effectiveness of our method.


SyMFM6D: Symmetry-aware Multi-directional Fusion for Multi-View 6D Object Pose Estimation

arXiv.org Artificial Intelligence

Detecting objects and estimating their 6D poses is essential for automated systems to interact safely with the environment. Most 6D pose estimators, however, rely on a single camera frame and suffer from occlusions and ambiguities due to object symmetries. We overcome this issue by presenting a novel symmetry-aware multi-view 6D pose estimator called SyMFM6D. Our approach efficiently fuses the RGB-D frames from multiple perspectives in a deep multi-directional fusion network and predicts predefined keypoints for all objects in the scene simultaneously. Based on the keypoints and an instance semantic segmentation, we efficiently compute the 6D poses by least-squares fitting. To address the ambiguity issues for symmetric objects, we propose a novel training procedure for symmetry-aware keypoint detection including a new objective function. Our SyMFM6D network significantly outperforms the state-of-the-art in both single-view and multi-view 6D pose estimation. We furthermore show the effectiveness of our symmetry-aware training procedure and demonstrate that our approach is robust towards inaccurate camera calibration and dynamic camera setups.


Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies

arXiv.org Artificial Intelligence

Robots often rely on a repertoire of previously-learned motion policies for performing tasks of diverse complexities. When facing unseen task conditions or when new task requirements arise, robots must adapt their motion policies accordingly. In this context, policy optimization is the \emph{de facto} paradigm to adapt robot policies as a function of task-specific objectives. Most commonly-used motion policies carry particular structures that are often overlooked in policy optimization algorithms. We instead propose to leverage the structure of probabilistic policies by casting the policy optimization as an optimal transport problem. Specifically, we focus on robot motion policies that build on Gaussian mixture models (GMMs) and formulate the policy optimization as a Wassertein gradient flow over the GMMs space. This naturally allows us to constrain the policy updates via the $L^2$-Wasserstein distance between GMMs to enhance the stability of the policy optimization process. Furthermore, we leverage the geometry of the Bures-Wasserstein manifold to optimize the Gaussian distributions of the GMM policy via Riemannian optimization. We evaluate our approach on common robotic settings: Reaching motions, collision-avoidance behaviors, and multi-goal tasks. Our results show that our method outperforms common policy optimization baselines in terms of task success rate and low-variance solutions.


The e-Bike Motor Assembly: Towards Advanced Robotic Manipulation for Flexible Manufacturing

arXiv.org Artificial Intelligence

Robotic manipulation is currently undergoing a profound paradigm shift due to the increasing needs for flexible manufacturing systems, and at the same time, because of the advances in enabling technologies such as sensing, learning, optimization, and hardware. This demands for robots that can observe and reason about their workspace, and that are skillfull enough to complete various assembly processes in weakly-structured settings. Moreover, it remains a great challenge to enable operators for teaching robots on-site, while managing the inherent complexity of perception, control, motion planning and reaction to unexpected situations. Motivated by real-world industrial applications, this paper demonstrates the potential of such a paradigm shift in robotics on the industrial case of an e-Bike motor assembly. The paper presents a concept for teaching and programming adaptive robots on-site and demonstrates their potential for the named applications. The framework includes: (i) a method to teach perception systems onsite in a self-supervised manner, (ii) a general representation of object-centric motion skills and force-sensitive assembly skills, both learned from demonstration, (iii) a sequencing approach that exploits a human-designed plan to perform complex tasks, and (iv) a system solution for adapting and optimizing skills online. The aforementioned components are interfaced through a four-layer software architecture that makes our framework a tangible industrial technology. To demonstrate the generality of the proposed framework, we provide, in addition to the motivating e-Bike motor assembly, a further case study on dense box packing for logistics automation.


A Hybrid Approach for Learning to Shift and Grasp with Elaborate Motion Primitives

arXiv.org Artificial Intelligence

Many possible fields of application of robots in real world settings hinge on the ability of robots to grasp objects. As a result, robot grasping has been an active field of research for many years. With our publication we contribute to the endeavor of enabling robots to grasp, with a particular focus on bin picking applications. Bin picking is especially challenging due to the often cluttered and unstructured arrangement of objects and the often limited graspability of objects by simple top down grasps. To tackle these challenges, we propose a fully self-supervised reinforcement learning approach based on a hybrid discrete-continuous adaptation of soft actor-critic (SAC). We employ parametrized motion primitives for pushing and grasping movements in order to enable a flexibly adaptable behavior to the difficult setups we consider. Furthermore, we use data augmentation to increase sample efficiency. We demonnstrate our proposed method on challenging picking scenarios in which planar grasp learning or action discretization methods would face a lot of difficulties


Pedestrian Behavior Prediction for Automated Driving: Requirements, Metrics, and Relevant Features

arXiv.org Artificial Intelligence

Automated vehicles require a comprehensive understanding of traffic situations to ensure safe and anticipatory driving. In this context, the prediction of pedestrians is particularly challenging as pedestrian behavior can be influenced by multiple factors. In this paper, we thoroughly analyze the requirements on pedestrian behavior prediction for automated driving via a system-level approach. To this end we investigate real-world pedestrian-vehicle interactions with human drivers. Based on human driving behavior we then derive appropriate reaction patterns of an automated vehicle and determine requirements for the prediction of pedestrians. This includes a novel metric tailored to measure prediction performance from a system-level perspective. The proposed metric is evaluated on a large-scale dataset comprising thousands of real-world pedestrian-vehicle interactions. We furthermore conduct an ablation study to evaluate the importance of different contextual cues and compare these results to ones obtained using established performance metrics for pedestrian prediction. Our results highlight the importance of a system-level approach to pedestrian behavior prediction.