Zhu, Guangyu
ESFL: Efficient Split Federated Learning over Resource-Constrained Heterogeneous Wireless Devices
Zhu, Guangyu, Deng, Yiqin, Chen, Xianhao, Zhang, Haixia, Fang, Yuguang, Wong, Tan F.
Federated learning (FL) allows multiple parties (distributed devices) to train a machine learning model without sharing raw data. How to effectively and efficiently utilize the resources on devices and the central server is a highly interesting yet challenging problem. In this paper, we propose an efficient split federated learning algorithm (ESFL) to take full advantage of the powerful computing capabilities at a central server under a split federated learning framework with heterogeneous end devices (EDs). By splitting the model into different submodels between the server and EDs, our approach jointly optimizes user-side workload and server-side computing resource allocation by considering users' heterogeneity. We formulate the whole optimization problem as a mixed-integer non-linear program, which is an NP-hard problem, and develop an iterative approach to obtain an approximate solution efficiently. Extensive simulations have been conducted to validate the significantly increased efficiency of our ESFL approach compared with standard federated learning, split learning, and splitfed learning.
Cost-aware Generalized $\alpha$-investing for Multiple Hypothesis Testing
Cook, Thomas, Dubey, Harsh Vardhan, Lee, Ji Ah, Zhu, Guangyu, Zhao, Tingting, Flaherty, Patrick
We consider the problem of sequential multiple hypothesis testing with nontrivial data collection costs. This problem appears, for example, when conducting biological experiments to identify differentially expressed genes of a disease process. This work builds on the generalized $\alpha$-investing framework which enables control of the false discovery rate in a sequential testing setting. We make a theoretical analysis of the long term asymptotic behavior of $\alpha$-wealth which motivates a consideration of sample size in the $\alpha$-investing decision rule. Posing the testing process as a game with nature, we construct a decision rule that optimizes the expected $\alpha$-wealth reward (ERO) and provides an optimal sample size for each test. Empirical results show that a cost-aware ERO decision rule correctly rejects more false null hypotheses than other methods for $n=1$ where $n$ is the sample size. When the sample size is not fixed cost-aware ERO uses a prior on the null hypothesis to adaptively allocate of the sample budget to each test. We extend cost-aware ERO investing to finite-horizon testing which enables the decision rule to allocate samples in a non-myopic manner. Finally, empirical tests on real data sets from biological experiments show that cost-aware ERO balances the allocation of samples to an individual test against the allocation of samples across multiple tests.
Efficient Parallel Split Learning over Resource-constrained Wireless Edge Networks
Lin, Zheng, Zhu, Guangyu, Deng, Yiqin, Chen, Xianhao, Gao, Yue, Huang, Kaibin, Fang, Yuguang
The increasingly deeper neural networks hinder the democratization of privacy-enhancing distributed learning, such as federated learning (FL), to resource-constrained devices. To overcome this challenge, in this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL), allowing multiple client devices to offload substantial training workloads to an edge server via layer-wise model split. By observing that existing PSL schemes incur excessive training latency and large volume of data transmissions, we propose an innovative PSL framework, namely, efficient parallel split learning (EPSL), to accelerate model training. To be specific, EPSL parallelizes client-side model training and reduces the dimension of local gradients for back propagation (BP) via last-layer gradient aggregation, leading to a significant reduction in server-side training and communication latency. Moreover, by considering the heterogeneous channel conditions and computing capabilities at client devices, we jointly optimize subchannel allocation, power control, and cut layer selection to minimize the per-round latency. Simulation results show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy compared with the state-of-the-art benchmarks, and the tailored resource management and layer split strategy can considerably reduce latency than the counterpart without optimization.
Deep-gKnock: nonlinear group-feature selection with deep neural network
Zhu, Guangyu, Zhao, Tingting
Feature selection is central to contemporary high-dimensional data analysis. Grouping structure among features arises naturally in various scientific problems. Many methods have been proposed to incorporate the grouping structure information into feature selection. However, these methods are normally restricted to a linear regression setting. To relax the linear constraint, we combine the deep neural networks (DNNs) with the recent Knockoffs technique, which has been successful in an individual feature selection context. We propose Deep-gKnock (Deep group-feature selection using Knockoffs) as a methodology for model interpretation and dimension reduction. Deep-gKnock performs model-free group-feature selection by controlling group-wise False Discovery Rate (gFDR). Our method improves the interpretability and reproducibility of DNNs. Experimental results on both synthetic and real data demonstrate that our method achieves superior power and accurate gFDR control compared with state-of-the-art methods.