Zhu, Fei
Towards Efficient and General-Purpose Few-Shot Misclassification Detection for Vision-Language Models
Zeng, Fanhu, Cheng, Zhen, Zhu, Fei, Zhang, Xu-Yao
Reliable prediction by classifiers is crucial for their deployment in high security and dynamically changing situations. However, modern neural networks often exhibit overconfidence for misclassified predictions, highlighting the need for confidence estimation to detect errors. Despite the achievements obtained by existing methods on small-scale datasets, they all require training from scratch and there are no efficient and effective misclassification detection (MisD) methods, hindering practical application towards large-scale and ever-changing datasets. In this paper, we pave the way to exploit vision language model (VLM) leveraging text information to establish an efficient and general-purpose misclassification detection framework. By harnessing the power of VLM, we construct FSMisD, a Few-Shot prompt learning framework for MisD to refrain from training from scratch and therefore improve tuning efficiency. To enhance misclassification detection ability, we use adaptive pseudo sample generation and a novel negative loss to mitigate the issue of overconfidence by pushing category prompts away from pseudo features. We conduct comprehensive experiments with prompt learning methods and validate the generalization ability across various datasets with domain shift. Significant and consistent improvement demonstrates the effectiveness, efficiency and generalizability of our approach.
Global Convergence of Continual Learning on Non-IID Data
Zhu, Fei, Liu, Yujing, Liu, Wenzhuo, Zhang, Zhaoxiang
Continual learning, which aims to learn multiple tasks sequentially, has gained extensive attention. However, most existing work focuses on empirical studies, and the theoretical aspect remains under-explored. Recently, a few investigations have considered the theory of continual learning only for linear regressions, establishes the results based on the strict independent and identically distributed (i.i.d.) assumption and the persistent excitation on the feature data that may be difficult to verify or guarantee in practice. To overcome this fundamental limitation, in this paper, we provide a general and comprehensive theoretical analysis for continual learning of regression models. By utilizing the stochastic Lyapunov function and martingale estimation techniques, we establish the almost sure convergence results of continual learning under a general data condition for the first time. Additionally, without any excitation condition imposed on the data, the convergence rates for the forgetting and regret metrics are provided.
Federated Continual Instruction Tuning
Guo, Haiyang, Zeng, Fanhu, Zhu, Fei, Liu, Wenzhuo, Wang, Da-Han, Xu, Jian, Zhang, Xu-Yao, Liu, Cheng-Lin
A vast amount of instruction tuning data is crucial for the impressive performance of Large Multimodal Models (LMMs), but the associated computational costs and data collection demands during supervised fine-tuning make it impractical for most researchers. Federated learning (FL) has the potential to leverage all distributed data and training resources to reduce the overhead of joint training. However, most existing methods assume a fixed number of tasks, while in real-world scenarios, clients continuously encounter new knowledge and often struggle to retain old tasks due to memory constraints. In this work, we introduce the Federated Continual Instruction Tuning (FCIT) benchmark to model this real-world challenge. Our benchmark includes two realistic scenarios, encompassing four different settings and twelve carefully curated instruction tuning datasets. To address the challenges posed by FCIT, we propose dynamic knowledge organization to effectively integrate updates from different tasks during training and subspace selective activation to allocate task-specific output during inference. Extensive experimental results demonstrate that our proposed method significantly enhances model performance across varying levels of data heterogeneity and catastrophic forgetting. Our source code and dataset will be made publicly available.
HiDe-LLaVA: Hierarchical Decoupling for Continual Instruction Tuning of Multimodal Large Language Model
Guo, Haiyang, Zeng, Fanhu, Xiang, Ziwei, Zhu, Fei, Wang, Da-Han, Zhang, Xu-Yao, Liu, Cheng-Lin
Instruction tuning is widely used to improve a pre-trained Multimodal Large Language Model (MLLM) by training it on curated task-specific datasets, enabling better comprehension of human instructions. However, it is infeasible to collect all possible instruction datasets simultaneously in real-world scenarios. Thus, enabling MLLM with continual instruction tuning is essential for maintaining their adaptability. However, existing methods often trade off memory efficiency for performance gains, significantly compromising overall efficiency. In this paper, we propose a task-specific expansion and task-general fusion framework based on the variations in Centered Kernel Alignment (CKA) similarity across different model layers when trained on diverse datasets. Furthermore, we analyze the information leakage present in the existing benchmark and propose a new and more challenging benchmark to rationally evaluate the performance of different methods. Comprehensive experiments showcase a significant performance improvement of our method compared to existing state-of-the-art methods. Our code will be public available.
Practical Continual Forgetting for Pre-trained Vision Models
Zhao, Hongbo, Zhu, Fei, Ni, Bolin, Zhu, Feng, Meng, Gaofeng, Zhang, Zhaoxiang
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners, and these requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify three key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. (iii) In real-world scenarios, the training samples may be scarce or partially missing during the process of forgetting. To address them, we first propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we introduce LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. To further extend GS-LoRA to more practical scenarios, we incorporate prototype information as additional supervision and introduce a more practical approach, GS-LoRA++. For each forgotten class, we move the logits away from its original prototype. For the remaining classes, we pull the logits closer to their respective prototypes. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that our method manages to forget specific classes with minimal impact on other classes. Codes have been released on https://github.com/bjzhb666/GS-LoRA.
DESIRE: Dynamic Knowledge Consolidation for Rehearsal-Free Continual Learning
Guo, Haiyang, Zhu, Fei, Zeng, Fanhu, Liu, Bing, Zhang, Xu-Yao
Continual learning aims to equip models with the ability to retain previously learned knowledge like a human. Recent work incorporating Parameter-Efficient Fine-Tuning has revitalized the field by introducing lightweight extension modules. However, existing methods usually overlook the issue of information leakage caused by the fact that the experiment data have been used in pre-trained models. Once these duplicate data are removed in the pre-training phase, their performance can be severely affected. In this paper, we propose a new LoRA-based rehearsal-free method named DESIRE. Our method avoids imposing additional constraints during training to mitigate catastrophic forgetting, thereby maximizing the learning of new classes. To integrate knowledge from old and new tasks, we propose two efficient post-processing modules. On the one hand, we retain only two sets of LoRA parameters for merging and propose dynamic representation consolidation to calibrate the merged feature representation. On the other hand, we propose decision boundary refinement to address classifier bias when training solely on new class data. Extensive experiments demonstrate that our method achieves state-of-the-art performance on multiple datasets and strikes an effective balance between stability and plasticity. Our code will be publicly available.
Fourier Boundary Features Network with Wider Catchers for Glass Segmentation
Qin, Xiaolin, Liu, Jiacen, Wang, Qianlei, Zhang, Shaolin, Zhu, Fei, Yi, Zhang
Glass largely blurs the boundary between the real world and the reflection. The special transmittance and reflectance quality have confused the semantic tasks related to machine vision. Therefore, how to clear the boundary built by glass, and avoid over-capturing features as false positive information in deep structure, matters for constraining the segmentation of reflection surface and penetrating glass. We proposed the Fourier Boundary Features Network with Wider Catchers (FBWC), which might be the first attempt to utilize sufficiently wide horizontal shallow branches without vertical deepening for guiding the fine granularity segmentation boundary through primary glass semantic information. Specifically, we designed the Wider Coarse-Catchers (WCC) for anchoring large area segmentation and reducing excessive extraction from a structural perspective. We embed fine-grained features by Cross Transpose Attention (CTA), which is introduced to avoid the incomplete area within the boundary caused by reflection noise. For excavating glass features and balancing high-low layers context, a learnable Fourier Convolution Controller (FCC) is proposed to regulate information integration robustly. The proposed method has been validated on three different public glass segmentation datasets. Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art (SOTA) methods in glass image segmentation.
Branch-Tuning: Balancing Stability and Plasticity for Continual Self-Supervised Learning
Liu, Wenzhuo, Zhu, Fei, Liu, Cheng-Lin
Self-supervised learning (SSL) has emerged as an effective paradigm for deriving general representations from vast amounts of unlabeled data. However, as real-world applications continually integrate new content, the high computational and resource demands of SSL necessitate continual learning rather than complete retraining. This poses a challenge in striking a balance between stability and plasticity when adapting to new information. In this paper, we employ Centered Kernel Alignment for quantitatively analyzing model stability and plasticity, revealing the critical roles of batch normalization layers for stability and convolutional layers for plasticity. Motivated by this, we propose Branch-tuning, an efficient and straightforward method that achieves a balance between stability and plasticity in continual SSL. Branch-tuning consists of branch expansion and compression, and can be easily applied to various SSL methods without the need of modifying the original methods, retaining old data or models. We validate our method through incremental experiments on various benchmark datasets, demonstrating its effectiveness and practical value in real-world scenarios. We hope our work offers new insights for future continual self-supervised learning research. The code will be made publicly available.
Open-world Machine Learning: A Review and New Outlooks
Zhu, Fei, Ma, Shijie, Cheng, Zhen, Zhang, Xu-Yao, Zhang, Zhaoxiang, Liu, Cheng-Lin
Machine learning has achieved remarkable success in many applications. However, existing studies are largely based on the closed-world assumption, which assumes that the environment is stationary, and the model is fixed once deployed. In many real-world applications, this fundamental and rather naive assumption may not hold because an open environment is complex, dynamic, and full of unknowns. In such cases, rejecting unknowns, discovering novelties, and then incrementally learning them, could enable models to be safe and evolve continually as biological systems do. This paper provides a holistic view of open-world machine learning by investigating unknown rejection, novel class discovery, and class-incremental learning in a unified paradigm. The challenges, principles, and limitations of current methodologies are discussed in detail. Finally, we discuss several potential directions for future research. This paper aims to provide a comprehensive introduction to the emerging open-world machine learning paradigm, to help researchers build more powerful AI systems in their respective fields, and to promote the development of artificial general intelligence.
Revisiting Confidence Estimation: Towards Reliable Failure Prediction
Zhu, Fei, Zhang, Xu-Yao, Cheng, Zhen, Liu, Cheng-Lin
Reliable confidence estimation is a challenging yet fundamental requirement in many risk-sensitive applications. However, modern deep neural networks are often overconfident for their incorrect predictions, i.e., misclassified samples from known classes, and out-of-distribution (OOD) samples from unknown classes. In recent years, many confidence calibration and OOD detection methods have been developed. In this paper, we find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors. We investigate this problem and reveal that popular calibration and OOD detection methods often lead to worse confidence separation between correctly classified and misclassified examples, making it difficult to decide whether to trust a prediction or not. Finally, we propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance under various settings including balanced, long-tailed, and covariate-shift classification scenarios. Our study not only provides a strong baseline for reliable confidence estimation but also acts as a bridge between understanding calibration, OOD detection, and failure prediction. The code is available at \url{https://github.com/Impression2805/FMFP}.