Goto

Collaborating Authors

 Zhu, Dongxiao


Generative LLM Powered Conversational AI Application for Personalized Risk Assessment: A Case Study in COVID-19

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown remarkable capabilities in various natural language tasks and are increasingly being applied in healthcare domains. This work demonstrates a new LLM-powered disease risk assessment approach via streaming human-AI conversation, eliminating the need for programming required by traditional machine learning approaches. In a COVID-19 severity risk assessment case study, we fine-tune pre-trained generative LLMs (e.g., Llama2-7b and Flan-t5-xl) using a few shots of natural language examples, comparing their performance with traditional classifiers (i.e., Logistic Regression, XGBoost, Random Forest) that are trained de novo using tabular data across various experimental settings. We develop a mobile application that uses these fine-tuned LLMs as its generative AI (GenAI) core to facilitate real-time interaction between clinicians and patients, providing no-code risk assessment through conversational interfaces. This integration not only allows for the use of streaming Questions and Answers (QA) as inputs but also offers personalized feature importance analysis derived from the LLM's attention layers, enhancing the interpretability of risk assessments. By achieving high Area Under the Curve (AUC) scores with a limited number of fine-tuning samples, our results demonstrate the potential of generative LLMs to outperform discriminative classification methods in low-data regimes, highlighting their real-world adaptability and effectiveness. This work aims to fill the existing gap in leveraging generative LLMs for interactive no-code risk assessment and to encourage further research in this emerging field.


Learning to Poison Large Language Models During Instruction Tuning

arXiv.org Artificial Intelligence

The advent of Large Language Models (LLMs) has marked significant achievements in language processing and reasoning capabilities. Despite their advancements, LLMs face vulnerabilities to data poisoning attacks, where adversaries insert backdoor triggers into training data to manipulate outputs for malicious purposes. This work further identifies additional security risks in LLMs by designing a new data poisoning attack tailored to exploit the instruction tuning process. We propose a novel gradient-guided backdoor trigger learning approach to identify adversarial triggers efficiently, ensuring an evasion of detection by conventional defenses while maintaining content integrity. Through experimental validation across various LLMs and tasks, our strategy demonstrates a high success rate in compromising model outputs; poisoning only 1\% of 4,000 instruction tuning samples leads to a Performance Drop Rate (PDR) of around 80\%. Our work highlights the need for stronger defenses against data poisoning attack, offering insights into safeguarding LLMs against these more sophisticated attacks. The source code can be found on this GitHub repository: https://github.com/RookieZxy/GBTL/blob/main/README.md.


GeoSAM: Fine-tuning SAM with Sparse and Dense Visual Prompting for Automated Segmentation of Mobility Infrastructure

arXiv.org Artificial Intelligence

The Segment Anything Model (SAM) has shown impressive performance when applied to natural image segmentation. However, it struggles with geographical images like aerial and satellite imagery, especially when segmenting mobility infrastructure including roads, sidewalks, and crosswalks. This inferior performance stems from the narrow features of these objects, their textures blending into the surroundings, and interference from objects like trees, buildings, vehicles, and pedestrians - all of which can disorient the model to produce inaccurate segmentation maps. To address these challenges, we propose Geographical SAM (GeoSAM), a novel SAM-based framework that implements a fine-tuning strategy using the dense visual prompt from zero-shot learning, and the sparse visual prompt from a pre-trained CNN segmentation model. The proposed GeoSAM outperforms existing approaches for geographical image segmentation, specifically by 26%, 7%, and 17% for road infrastructure, pedestrian infrastructure, and on average, respectively, representing a momentous leap in leveraging foundation models to segment mobility infrastructure including both road and pedestrian infrastructure in geographical images. The source code can be found on this GitHub repository: https://github.com/rafiibnsultan/GeoSAM/tree/main.


MFABA: A More Faithful and Accelerated Boundary-based Attribution Method for Deep Neural Networks

arXiv.org Artificial Intelligence

To better understand the output of deep neural networks (DNN), attribution based methods have been an important approach for model interpretability, which assign a score for each input dimension to indicate its importance towards the model outcome. Notably, the attribution methods use the axioms of sensitivity and implementation invariance to ensure the validity and reliability of attribution results. Yet, the existing attribution methods present challenges for effective interpretation and efficient computation. In this work, we introduce MFABA, an attribution algorithm that adheres to axioms, as a novel method for interpreting DNN. Additionally, we provide the theoretical proof and in-depth analysis for MFABA algorithm, and conduct a large scale experiment. The results demonstrate its superiority by achieving over 101.5142 times faster speed than the state-of-the-art attribution algorithms. The effectiveness of MFABA is thoroughly evaluated through the statistical analysis in comparison to other methods, and the full implementation package is open-source at: https://github.com/LMBTough/MFABA


FedDRO: Federated Compositional Optimization for Distributionally Robust Learning

arXiv.org Artificial Intelligence

Recently, compositional optimization (CO) has gained popularity because of its applications in distributionally robust optimization (DRO) and many other machine learning problems. Large-scale and distributed availability of data demands the development of efficient federated learning (FL) algorithms for solving CO problems. Developing FL algorithms for CO is particularly challenging because of the compositional nature of the objective. Moreover, current state-of-the-art methods to solve such problems rely on large batch gradients (depending on the solution accuracy) not feasible for most practical settings. To address these challenges, in this work, we propose efficient FedAvg-type algorithms for solving non-convex CO in the FL setting. We first establish that vanilla FedAvg is not suitable to solve distributed CO problems because of the data heterogeneity in the compositional objective at each client which leads to the amplification of bias in the local compositional gradient estimates. To this end, we propose a novel FL framework FedDRO that utilizes the DRO problem structure to design a communication strategy that allows FedAvg to control the bias in the estimation of the compositional gradient. A key novelty of our work is to develop solution accuracy-independent algorithms that do not require large batch gradients (and function evaluations) for solving federated CO problems. We establish $\mathcal{O}(\epsilon^{-2})$ sample and $\mathcal{O}(\epsilon^{-3/2})$ communication complexity in the FL setting while achieving linear speedup with the number of clients. We corroborate our theoretical findings with empirical studies on large-scale DRO problems.


Auto-Prompting SAM for Mobile Friendly 3D Medical Image Segmentation

arXiv.org Artificial Intelligence

Segment Anything Model (SAM) has rapidly been adopted for segmenting a wide range of natural images. However, recent studies have indicated that SAM exhibits subpar performance on 3D medical image segmentation tasks. In addition to the domain gaps between natural and medical images, disparities in the spatial arrangement between 2D and 3D images, the substantial computational burden imposed by powerful GPU servers, and the time-consuming manual prompt generation impede the extension of SAM to a broader spectrum of medical image segmentation applications. To mitigate these challenges, we introduce a novel method, AutoSAM Adapter, designed specifically for 3D multi-organ CT-based segmentation. This approach utilizes parameter-efficient adaptation techniques and an automatic prompt learning paradigm, transforming SAM's capabilities for 3D medical image segmentation. It eliminates the need for manual prompts and achieves SOTA performance in CT-based multi-organ segmentation tasks. Furthermore, we successfully transfer the acquired knowledge of the AutoSAM Adapter to other lightweight models tailored for 3D medical image analysis with enhanced performance. Through extensive experiments, the AutoSAM Adapter has been demonstrated as an effective method to adapt the foundational SAM-based 2D natural image segmentation model for 3D medical image segmentation tasks.


Hijacking Large Language Models via Adversarial In-Context Learning

arXiv.org Artificial Intelligence

In-context learning (ICL) has emerged as a powerful paradigm leveraging LLMs for specific tasks by utilizing labeled examples as demonstrations in the precondition prompts. Despite its promising performance, ICL suffers from instability with the choice and arrangement of examples. Additionally, crafted adversarial attacks pose a notable threat to the robustness of ICL. However, existing attacks are either easy to detect, rely on external models, or lack specificity towards ICL. To address these issues, this work introduces a novel transferable attack for ICL, aiming to hijack LLMs to generate the targeted response. The proposed LLM hijacking attack leverages a gradient-based prompt search method to learn and append imperceptible adversarial suffixes to the in-context demonstrations. Extensive experimental results on various tasks and datasets demonstrate the effectiveness of our LLM hijacking attack, resulting in a distracted attention towards adversarial tokens, consequently leading to the targeted unwanted outputs.


Fairness-aware Vision Transformer via Debiased Self-Attention

arXiv.org Artificial Intelligence

Vision Transformer (ViT) has recently gained significant interest in solving computer vision (CV) problems due to its capability of extracting informative features and modeling long-range dependencies through the self-attention mechanism. To fully realize the advantages of ViT in real-world applications, recent works have explored the trustworthiness of ViT, including its robustness and explainability. However, another desiderata, fairness has not yet been adequately addressed in the literature. We establish that the existing fairness-aware algorithms (primarily designed for CNNs) do not perform well on ViT. This necessitates the need for developing our novel framework via Debiased Self-Attention (DSA). DSA is a fairness-through-blindness approach that enforces ViT to eliminate spurious features correlated with the sensitive attributes for bias mitigation. Notably, adversarial examples are leveraged to locate and mask the spurious features in the input image patches. In addition, DSA utilizes an attention weights alignment regularizer in the training objective to encourage learning informative features for target prediction. Importantly, our DSA framework leads to improved fairness guarantees over prior works on multiple prediction tasks without compromising target prediction performance.


Negative Flux Aggregation to Estimate Feature Attributions

arXiv.org Artificial Intelligence

Gradient based methods such as Saliency Map [Simonyan Due to multi-layer nonlinearity of the deep neural et al., 2013], SmoothGrad [Smilkov et al., 2017], Full-network architectures, explaining DNN predictions Grad [Srinivas and Fleuret, 2019], Integrated Gradient (IG) still remains as an open problem, preventing and its variants [Sundararajan et al., 2017; Hesse et al., 2021; us from gaining a deeper understanding of the mechanisms. Erion et al., 2021; Pan et al., 2021; Kapishnikov et al., 2019; To enhance the explainability of DNNs, Kapishnikov et al., 2021] require neither surrogates nor customized we estimate the input feature's attributions to the rules but must tackle unstable estimates of gradients prediction task using divergence and flux. Inspired w.r.t. the given inputs. IG type of path integration based by the divergence theorem in vector analysis, we methods mitigate this issue via a path integration for gradient develop a novel Negative Flux Aggregation (Ne-smoothing, however, this also introduces another degree FLAG) formulation and an efficient approximation of instability and noise sourced from arbitrary selections of algorithm to estimate attribution map.


Learning Compact Features via In-Training Representation Alignment

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) for supervised learning can be viewed as a pipeline of the feature extractor (i.e., last hidden layer) and a linear classifier (i.e., output layer) that are trained jointly with stochastic gradient descent (SGD) on the loss function (e.g., cross-entropy). In each epoch, the true gradient of the loss function is estimated using a mini-batch sampled from the training set and model parameters are then updated with the mini-batch gradients. Although the latter provides an unbiased estimation of the former, they are subject to substantial variances derived from the size and number of sampled mini-batches, leading to noisy and jumpy updates. To stabilize such undesirable variance in estimating the true gradients, we propose In-Training Representation Alignment (ITRA) that explicitly aligns feature distributions of two different mini-batches with a matching loss in the SGD training process. We also provide a rigorous analysis of the desirable effects of the matching loss on feature representation learning: (1) extracting compact feature representation; (2) reducing over-adaption on mini-batches via an adaptive weighting mechanism; and (3) accommodating to multi-modalities. Finally, we conduct large-scale experiments on both image and text classifications to demonstrate its superior performance to the strong baselines.