Goto

Collaborating Authors

 Zhou, Zhenhong


CORBA: Contagious Recursive Blocking Attacks on Multi-Agent Systems Based on Large Language Models

arXiv.org Artificial Intelligence

Large Language Model-based Multi-Agent Systems (LLM-MASs) have demonstrated remarkable real-world capabilities, effectively collaborating to complete complex tasks. While these systems are designed with safety mechanisms, such as rejecting harmful instructions through alignment, their security remains largely unexplored. This gap leaves LLM-MASs vulnerable to targeted disruptions. In this paper, we introduce Contagious Recursive Blocking Attacks (Corba), a novel and simple yet highly effective attack that disrupts interactions between agents within an LLM-MAS. Corba leverages two key properties: its contagious nature allows it to propagate across arbitrary network topologies, while its recursive property enables sustained depletion of computational resources. Notably, these blocking attacks often involve seemingly benign instructions, making them particularly challenging to mitigate using conventional alignment methods. We evaluate Corba on two widely-used LLM-MASs, namely, AutoGen and Camel across various topologies and commercial models. Additionally, we conduct more extensive experiments in open-ended interactive LLM-MASs, demonstrating the effectiveness of Corba in complex topology structures and open-source models. Our code is available at: https://github.com/zhrli324/Corba.


Reinforced Lifelong Editing for Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) acquire information from pre-training corpora, but their stored knowledge can become inaccurate or outdated over time. Model editing addresses this challenge by modifying model parameters without retraining, and prevalent approaches leverage hypernetworks to generate these parameter updates. However, they face significant challenges in lifelong editing due to their incompatibility with LLM parameters that dynamically change during the editing process. To address this, we observed that hypernetwork-based lifelong editing aligns with reinforcement learning modeling and proposed RLEdit, an RL-based editing method. By treating editing losses as rewards and optimizing hypernetwork parameters at the full knowledge sequence level, we enable it to precisely capture LLM changes and generate appropriate parameter updates. Our extensive empirical evaluation across several LLMs demonstrates that RLEdit outperforms existing methods in lifelong editing with superior effectiveness and efficiency, achieving a 59.24% improvement while requiring only 2.11% of the time compared to most approaches. Our code is available at: https://github.com/zhrli324/RLEdit.


DemonAgent: Dynamically Encrypted Multi-Backdoor Implantation Attack on LLM-based Agent

arXiv.org Artificial Intelligence

As LLM-based agents become increasingly prevalent, backdoors can be implanted into agents through user queries or environment feedback, raising critical concerns regarding safety vulnerabilities. However, backdoor attacks are typically detectable by safety audits that analyze the reasoning process of agents. To this end, we propose a novel backdoor implantation strategy called \textbf{Dynamically Encrypted Multi-Backdoor Implantation Attack}. Specifically, we introduce dynamic encryption, which maps the backdoor into benign content, effectively circumventing safety audits. To enhance stealthiness, we further decompose the backdoor into multiple sub-backdoor fragments. Based on these advancements, backdoors are allowed to bypass safety audits significantly. Additionally, we present AgentBackdoorEval, a dataset designed for the comprehensive evaluation of agent backdoor attacks. Experimental results across multiple datasets demonstrate that our method achieves an attack success rate nearing 100\% while maintaining a detection rate of 0\%, illustrating its effectiveness in evading safety audits. Our findings highlight the limitations of existing safety mechanisms in detecting advanced attacks, underscoring the urgent need for more robust defenses against backdoor threats. Code and data are available at https://github.com/whfeLingYu/DemonAgent.


Crabs: Consuming Resrouce via Auto-generation for LLM-DoS Attack under Black-box Settings

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks. LLMs continue to be vulnerable to external threats, particularly Denial-of-Service (DoS) attacks. Specifically, LLM-DoS attacks aim to exhaust computational resources and block services. However, prior works tend to focus on performing white-box attacks, overlooking black-box settings. In this work, we propose an automated algorithm designed for black-box LLMs, called Auto-Generation for LLM-DoS Attack (AutoDoS). AutoDoS introduces DoS Attack Tree and optimizes the prompt node coverage to enhance effectiveness under black-box conditions. Our method can bypass existing defense with enhanced stealthiness via semantic improvement of prompt nodes. Furthermore, we reveal that implanting Length Trojan in Basic DoS Prompt aids in achieving higher attack efficacy. Experimental results show that AutoDoS amplifies service response latency by over 250 $\times \uparrow$, leading to severe resource consumption in terms of GPU utilization and memory usage. Our code is available at \url{https://github.com/shuita2333/AutoDoS}.


On the Role of Attention Heads in Large Language Model Safety

arXiv.org Artificial Intelligence

Large language models (LLMs) achieve state-of-the-art performance on multiple language tasks, yet their safety guardrails can be circumvented, leading to harmful generations. In light of this, recent research on safety mechanisms has emerged, revealing that when safety representations or component are suppressed, the safety capability of LLMs are compromised. However, existing research tends to overlook the safety impact of multi-head attention mechanisms, despite their crucial role in various model functionalities. Hence, in this paper, we aim to explore the connection between standard attention mechanisms and safety capability to fill this gap in the safety-related mechanistic interpretability. We propose a novel metric which tailored for multi-head attention, the Safety Head ImPortant Score (Ships), to assess the individual heads' contributions to model safety. Based on this, we generalize Ships to the dataset level and further introduce the Safety Attention Head AttRibution Algorithm (Sahara) to attribute the critical safety attention heads inside the model. Our findings show that the special attention head has a significant impact on safety. Ablating a single safety head allows aligned model (e.g., Llama-2-7b-chat) to respond to 16 times more harmful queries, while only modifying 0.006% of the parameters, in contrast to the ~ 5% modification required in previous studies. More importantly, we demonstrate that attention heads primarily function as feature extractors for safety and models fine-tuned from the same base model exhibit overlapping safety heads through comprehensive experiments. Together, our attribution approach and findings provide a novel perspective for unpacking the black box of safety mechanisms within large models.


How Alignment and Jailbreak Work: Explain LLM Safety through Intermediate Hidden States

arXiv.org Artificial Intelligence

Large language models (LLMs) rely on safety alignment to avoid responding to malicious user inputs. Unfortunately, jailbreak can circumvent safety guardrails, resulting in LLMs generating harmful content and raising concerns about LLM safety. Due to language models with intensive parameters often regarded as black boxes, the mechanisms of alignment and jailbreak are challenging to elucidate. In this paper, we employ weak classifiers to explain LLM safety through the intermediate hidden states. We first confirm that LLMs learn ethical concepts during pre-training rather than alignment and can identify malicious and normal inputs in the early layers. Alignment actually associates the early concepts with emotion guesses in the middle layers and then refines them to the specific reject tokens for safe generations. Jailbreak disturbs the transformation of early unethical classification into negative emotions. We conduct experiments on models from 7B to 70B across various model families to prove our conclusion. Overall, our paper indicates the intrinsical mechanism of LLM safety and how jailbreaks circumvent safety guardrails, offering a new perspective on LLM safety and reducing concerns. Our code is available at https://github.com/ydyjya/LLM-IHS-Explanation.


Speak Out of Turn: Safety Vulnerability of Large Language Models in Multi-turn Dialogue

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have been demonstrated to generate illegal or unethical responses, particularly when subjected to "jailbreak." Research on jailbreak has highlighted the safety issues of LLMs. However, prior studies have predominantly focused on single-turn dialogue, ignoring the potential complexities and risks presented by multi-turn dialogue, a crucial mode through which humans derive information from LLMs. In this paper, we argue that humans could exploit multi-turn dialogue to induce LLMs into generating harmful information. LLMs may not intend to reject cautionary or borderline unsafe queries, even if each turn is closely served for one malicious purpose in a multi-turn dialogue. Therefore, by decomposing an unsafe query into several sub-queries for multi-turn dialogue, we induced LLMs to answer harmful sub-questions incrementally, culminating in an overall harmful response. Our experiments, conducted across a wide range of LLMs, indicate current inadequacies in the safety mechanisms of LLMs in multi-turn dialogue. Our findings expose vulnerabilities of LLMs in complex scenarios involving multi-turn dialogue, presenting new challenges for the safety of LLMs.


Quantifying and Analyzing Entity-level Memorization in Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have been proven capable of memorizing their training data, which can be extracted through specifically designed prompts. As the scale of datasets continues to grow, privacy risks arising from memorization have attracted increasing attention. Quantifying language model memorization helps evaluate potential privacy risks. However, prior works on quantifying memorization require access to the precise original data or incur substantial computational overhead, making it difficult for applications in real-world language models. To this end, we propose a fine-grained, entity-level definition to quantify memorization with conditions and metrics closer to real-world scenarios. In addition, we also present an approach for efficiently extracting sensitive entities from autoregressive language models. We conduct extensive experiments based on the proposed, probing language models' ability to reconstruct sensitive entities under different settings. We find that language models have strong memorization at the entity level and are able to reproduce the training data even with partial leakages. The results demonstrate that LLMs not only memorize their training data but also understand associations between entities. These findings necessitate that trainers of LLMs exercise greater prudence regarding model memorization, adopting memorization mitigation techniques to preclude privacy violations.