Zhou, Yifan
Efficient Multi-Task Inferencing: Model Merging with Gromov-Wasserstein Feature Alignment
Fang, Luyang, Latif, Ehsan, Lu, Haoran, Zhou, Yifan, Ma, Ping, Zhai, Xiaoming
Automatic scoring of student responses enhances efficiency in education, but deploying a separate neural network for each task increases storage demands, maintenance efforts, and redundant computations. To address these challenges, this paper introduces the Gromov-Wasserstein Scoring Model Merging (GW-SMM) method, which merges models based on feature distribution similarities measured via the Gromov-Wasserstein distance. Our approach begins by extracting features from student responses using individual models, capturing both item-specific context and unique learned representations. The Gromov-Wasserstein distance then quantifies the similarity between these feature distributions, identifying the most compatible models for merging. Models exhibiting the smallest pairwise distances, typically in pairs or trios, are merged by combining only the shared layers preceding the classification head. This strategy results in a unified feature extractor while preserving separate classification heads for item-specific scoring. We validated our approach against human expert knowledge and a GPT-o1-based merging method. GW-SMM consistently outperformed both, achieving a higher micro F1 score, macro F1 score, exact match accuracy, and per-label accuracy. The improvements in micro F1 and per-label accuracy were statistically significant compared to GPT-o1-based merging (p=0.04, p=0.01). Additionally, GW-SMM reduced storage requirements by half without compromising much accuracy, demonstrating its computational efficiency alongside reliable scoring performance.
From Task-Specific Models to Unified Systems: A Review of Model Merging Approaches
Ruan, Wei, Yang, Tianze, Zhou, Yifan, Liu, Tianming, Lu, Jin
Model merging has achieved significant success, with numerous innovative methods proposed to enhance capabilities by combining multiple models. However, challenges persist due to the lack of a unified framework for classification and systematic comparative analysis, leading to inconsistencies in terminologies and categorizations. Meanwhile, as an increasing number of fine-tuned models are publicly available, their original training data often remain inaccessible due to privacy concerns or intellectual property restrictions. This makes traditional multi-task learning based on shared training data impractical. In scenarios where direct access to training data is infeasible, merging model parameters to create a unified model with broad generalization across multiple domains becomes crucial, further underscoring the importance of model merging techniques. Despite the rapid progress in this field, a comprehensive taxonomy and survey summarizing recent advances and predicting future directions are still lacking. This paper addresses these gaps by establishing a new taxonomy of model merging methods, systematically comparing different approaches, and providing an overview of key developments. By offering a structured perspective on this evolving area, we aim to help newcomers quickly grasp the field's landscape and inspire further innovations.
The Essence of Contextual Understanding in Theory of Mind: A Study on Question Answering with Story Characters
Zhou, Chulun, Wang, Qiujing, Yu, Mo, Yue, Xiaoqian, Lu, Rui, Li, Jiangnan, Zhou, Yifan, Zhang, Shunchi, Zhou, Jie, Lam, Wai
Theory-of-Mind (ToM) is a fundamental psychological capability that allows humans to understand and interpret the mental states of others. Humans infer others' thoughts by integrating causal cues and indirect clues from broad contextual information, often derived from past interactions. In other words, human ToM heavily relies on the understanding about the backgrounds and life stories of others. Unfortunately, this aspect is largely overlooked in existing benchmarks for evaluating machines' ToM capabilities, due to their usage of short narratives without global backgrounds. In this paper, we verify the importance of understanding long personal backgrounds in ToM and assess the performance of LLMs in such realistic evaluation scenarios. To achieve this, we introduce a novel benchmark, CharToM-QA, comprising 1,035 ToM questions based on characters from classic novels. Our human study reveals a significant disparity in performance: the same group of educated participants performs dramatically better when they have read the novels compared to when they have not. In parallel, our experiments on state-of-the-art LLMs, including the very recent o1 model, show that LLMs still perform notably worse than humans, despite that they have seen these stories during pre-training. This highlights the limitations of current LLMs in capturing the nuanced contextual information required for ToM reasoning.
An Immersive Multi-Elevation Multi-Seasonal Dataset for 3D Reconstruction and Visualization
Liu, Xijun, Zhou, Yifan, Guo, Yuxiang, Chellappa, Rama, Peng, Cheng
Significant progress has been made in photo-realistic scene reconstruction over recent years. Various disparate efforts have enabled capabilities such as multi-appearance or large-scale modeling; however, there lacks a welldesigned dataset that can evaluate the holistic progress of scene reconstruction. We introduce a collection of imagery of the Johns Hopkins Homewood Campus, acquired at different seasons, times of day, in multiple elevations, and across a large scale. We perform a multi-stage calibration process, which efficiently recover camera parameters from phone and drone cameras. This dataset can enable researchers to rigorously explore challenges in unconstrained settings, including effects of inconsistent illumination, reconstruction from large scale and from significantly different perspectives, etc.
Machine Learning Co-pilot for Screening of Organic Molecular Additives for Perovskite Solar Cells
Pu, Yang, Dai, Zhiyuan, Zhou, Yifan, Jia, Ning, Wang, Hongyue, Mukhametkarimov, Yerzhan, Chen, Ruihao, Wang, Hongqiang, Liu, Zhe
Machine learning (ML) has been extensively employed in planar perovskite photovoltaics to screen effective organic molecular additives, while encountering predictive biases for novel materials due to small datasets and reliance on predefined descriptors. Present work thus proposes an effective approach, Co-Pilot for Perovskite Additive Screener (Co-PAS), an ML-driven framework designed to accelerate additive screening for perovskite solar cells (PSCs). Co-PAS overcomes predictive biases by integrating the Molecular Scaffold Classifier (MSC) for scaffold-based pre-screening and utilizing Junction Tree Variational Autoencoder (JTVAE) latent vectors to enhance molecular structure representation, thereby enhancing the accuracy of power conversion efficiency (PCE) predictions. Leveraging Co-PAS, we integrate domain knowledge to screen an extensive dataset of 250,000 molecules from PubChem, prioritizing candidates based on predicted PCE values and key molecular properties such as donor number, dipole moment, and hydrogen bond acceptor count. This workflow leads to the identification of several promising passivating molecules, including the novel Boc-L-threonine N-hydroxysuccinimide ester (BTN), which, to our knowledge, has not been explored as an additive in PSCs and achieves a device PCE of 25.20%. Our results underscore the potential of Co-PAS in advancing additive discovery for high-performance PSCs.
Opportunities and Challenges of Large Language Models for Low-Resource Languages in Humanities Research
Zhong, Tianyang, Yang, Zhenyuan, Liu, Zhengliang, Zhang, Ruidong, Liu, Yiheng, Sun, Haiyang, Pan, Yi, Li, Yiwei, Zhou, Yifan, Jiang, Hanqi, Chen, Junhao, Liu, Tianming
Importance and Endangerment of Low-Resource Languages in the Global Linguistic Ecology The linguistic landscape of the world constitutes a complex tapestry interwoven with a rich diversity of languages, each strand epitomizing a distinctive cultural, historical, and social identity. This global linguistic diversity forms a foundational pillar of human civilization, cultivating an array of perspectives and worldviews that enhance our collective intellectual legacy. Among these, low-resource languages occupy a particularly crucial position, not merely as modes of communication but as repositories of distinctive cultural knowledge, historical narratives, and worldviews. These languages, frequently spoken by smaller communities, are essential to the preservation of cultural heritage and the transmission of indigenous knowledge systems. However, the global linguistic landscape is presently undergoing an extraordinary crisis, with lowresource languages among the most threatened. The swift vanishing of these languages is of serious concern, highlighted by concerning data and studies. It is estimated, for example, that around 40% of the world's 7,000 languages face extinction, with numerous low-resource languages having fewer than 1,000 speakers [94].
Can OpenAI o1 outperform humans in higher-order cognitive thinking?
Latif, Ehsan, Zhou, Yifan, Guo, Shuchen, Shi, Lehong, Gao, Yizhu, Nyaaba, Matthew, Bewerdorff, Arne, Yang, Xiantong, Zhai, Xiaoming
This study evaluates the performance of OpenAI's o1-preview model in higher-order cognitive domains, including critical thinking, systematic thinking, computational thinking, data literacy, creative thinking, logical reasoning, and scientific reasoning. Using established benchmarks, we compared the o1-preview models's performance to human participants from diverse educational levels. o1-preview achieved a mean score of 24.33 on the Ennis-Weir Critical Thinking Essay Test (EWCTET), surpassing undergraduate (13.8) and postgraduate (18.39) participants (z = 1.60 and 0.90, respectively). In systematic thinking, it scored 46.1, SD = 4.12 on the Lake Urmia Vignette, significantly outperforming the human mean (20.08, SD = 8.13, z = 3.20). For data literacy, o1-preview scored 8.60, SD = 0.70 on Merk et al.'s "Use Data" dimension, compared to the human post-test mean of 4.17, SD = 2.02 (z = 2.19). On creative thinking tasks, the model achieved originality scores of 2.98, SD = 0.73, higher than the human mean of 1.74 (z = 0.71). In logical reasoning (LogiQA), it outperformed humans with average 90%, SD = 10% accuracy versus 86%, SD = 6.5% (z = 0.62). For scientific reasoning, it achieved near-perfect performance (mean = 0.99, SD = 0.12) on the TOSLS,, exceeding the highest human scores of 0.85, SD = 0.13 (z = 1.78). While o1-preview excelled in structured tasks, it showed limitations in problem-solving and adaptive reasoning. These results demonstrate the potential of AI to complement education in structured assessments but highlight the need for ethical oversight and refinement for broader applications.
QueEn: A Large Language Model for Quechua-English Translation
Chen, Junhao, Shu, Peng, Li, Yiwei, Zhao, Huaqin, Jiang, Hanqi, Pan, Yi, Zhou, Yifan, Liu, Zhengliang, Howe, Lewis C, Liu, Tianming
Recent studies show that large language models (LLMs) are powerful tools for working with natural language, bringing advances in many areas of computational linguistics. However, these models face challenges when applied to low-resource languages due to limited training data and difficulty in understanding cultural nuances. In this paper, we propose QueEn, a novel approach for Quechua-English translation that combines Retrieval-Augmented Generation (RAG) with parameter-efficient fine-tuning techniques. Our method leverages external linguistic resources through RAG and uses Low-Rank Adaptation (LoRA) for efficient model adaptation. Experimental results show that our approach substantially exceeds baseline models, with a BLEU score of 17.6 compared to 1.5 for standard GPT models. The integration of RAG with fine-tuning allows our system to address the challenges of low-resource language translation while maintaining computational efficiency. This work contributes to the broader goal of preserving endangered languages through advanced language technologies.
Rotograb: Combining Biomimetic Hands with Industrial Grippers using a Rotating Thumb
Bersier, Arnaud, Leonforte, Matteo, Vanetta, Alessio, Wotke, Sarah Lia Andrea, Nappi, Andrea, Zhou, Yifan, Oliani, Sebastiano, Kรผbler, Alexander M., Katzschmann, Robert K.
The development of robotic grippers and hands for automation aims to emulate human dexterity without sacrificing the efficiency of industrial grippers. This study introduces Rotograb, a tendon-actuated robotic hand featuring a novel rotating thumb. The aim is to combine the dexterity of human hands with the efficiency of industrial grippers. The rotating thumb enlarges the workspace and allows in-hand manipulation. A novel joint design minimizes movement interference and simplifies kinematics, using a cutout for tendon routing. We integrate teleoperation, using a depth camera for real-time tracking and autonomous manipulation powered by reinforcement learning with proximal policy optimization. Experimental evaluations demonstrate that Rotograb's rotating thumb greatly improves both operational versatility and workspace. It can handle various grasping and manipulation tasks with objects from the YCB dataset, with particularly good results when rotating objects within its grasp. Rotograb represents a notable step towards bridging the capability gap between human hands and industrial grippers. The tendon-routing and thumb-rotating mechanisms allow for a new level of control and dexterity. Integrating teleoperation and autonomous learning underscores Rotograb's adaptability and sophistication, promising substantial advancements in both robotics research and practical applications.
Transcending Language Boundaries: Harnessing LLMs for Low-Resource Language Translation
Shu, Peng, Chen, Junhao, Liu, Zhengliang, Wang, Hui, Wu, Zihao, Zhong, Tianyang, Li, Yiwei, Zhao, Huaqin, Jiang, Hanqi, Pan, Yi, Zhou, Yifan, Owl, Constance, Zhai, Xiaoming, Liu, Ninghao, Saunt, Claudio, Liu, Tianming
Large Language Models (LLMs) have demonstrated remarkable success across a wide range of tasks and domains. However, their performance in low-resource language translation, particularly when translating into these languages, remains underexplored. This gap poses significant challenges, as linguistic barriers hinder the cultural preservation and development of minority communities. To address this issue, this paper introduces a novel retrieval-based method that enhances translation quality for low-resource languages by focusing on key terms, which involves translating keywords and retrieving corresponding examples from existing data. To evaluate the effectiveness of this method, we conducted experiments translating from English into three low-resource languages: Cherokee, a critically endangered indigenous language of North America; Tibetan, a historically and culturally significant language in Asia; and Manchu, a language with few remaining speakers. Our comparison with the zero-shot performance of GPT-4o and LLaMA 3.1 405B, highlights the significant challenges these models face when translating into low-resource languages. In contrast, our retrieval-based method shows promise in improving both word-level accuracy and overall semantic understanding by leveraging existing resources more effectively.