Goto

Collaborating Authors

 Zhou, Qing


Scale Efficient Training for Large Datasets

arXiv.org Artificial Intelligence

The rapid growth of dataset scales has been a key driver in advancing deep learning research. However, as dataset scale increases, the training process becomes increasingly inefficient due to the presence of low-value samples, including excessive redundant samples, overly challenging samples, and inefficient easy samples that contribute little to model improvement.To address this challenge, we propose Scale Efficient Training (SeTa) for large datasets, a dynamic sample pruning approach that losslessly reduces training time. To remove low-value samples, SeTa first performs random pruning to eliminate redundant samples, then clusters the remaining samples according to their learning difficulty measured by loss. Building upon this clustering, a sliding window strategy is employed to progressively remove both overly challenging and inefficient easy clusters following an easy-to-hard curriculum.We conduct extensive experiments on large-scale synthetic datasets, including ToCa, SS1M, and ST+MJ, each containing over 3 million samples.SeTa reduces training costs by up to 50\% while maintaining or improving performance, with minimal degradation even at 70\% cost reduction. Furthermore, experiments on various scale real datasets across various backbones (CNNs, Transformers, and Mambas) and diverse tasks (instruction tuning, multi-view stereo, geo-localization, composed image retrieval, referring image segmentation) demonstrate the powerful effectiveness and universality of our approach. Code is available at https://github.com/mrazhou/SeTa.


Causal bandits with backdoor adjustment on unknown Gaussian DAGs

arXiv.org Artificial Intelligence

The causal bandit problem aims to sequentially learn the intervention that maximizes the expectation of a reward variable within a system governed by a causal graph. Most existing approaches assume prior knowledge of the graph structure, or impose unrealistically restrictive conditions on the graph. In this paper, we assume a Gaussian linear directed acyclic graph (DAG) over arms and the reward variable, and study the causal bandit problem when the graph structure is unknown. We identify backdoor adjustment sets for each arm using sequentially generated experimental and observational data during the decision process, which allows us to estimate causal effects and construct upper confidence bounds. By integrating estimates from both data sources, we develop a novel bandit algorithm, based on modified upper confidence bounds, to sequentially determine the optimal intervention. We establish both case-dependent and case-independent upper bounds on the cumulative regret for our algorithm, which improve upon the bounds of the standard multi-armed bandit algorithms. Our empirical study demonstrates its advantage over existing methods with respect to cumulative regret and computation time.


Causal Discovery on Dependent Binary Data

arXiv.org Machine Learning

The assumption of independence between observations (units) in a dataset is prevalent across various methodologies for learning causal graphical models. However, this assumption often finds itself in conflict with real-world data, posing challenges to accurate structure learning. We propose a decorrelation-based approach for causal graph learning on dependent binary data, where the local conditional distribution is defined by a latent utility model with dependent errors across units. We develop a pairwise maximum likelihood method to estimate the covariance matrix for the dependence among the units. Then, leveraging the estimated covariance matrix, we develop an EM-like iterative algorithm to generate and decorrelate samples of the latent utility variables, which serve as decorrelated data. Any standard causal discovery method can be applied on the decorrelated data to learn the underlying causal graph. We demonstrate that the proposed decorrelation approach significantly improves the accuracy in causal graph learning, through numerical experiments on both synthetic and real-world datasets.


Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning

arXiv.org Artificial Intelligence

Brain tumor segmentation remains a significant challenge, particularly in the context of multi-modal magnetic resonance imaging (MRI) where missing modality images are common in clinical settings, leading to reduced segmentation accuracy. To address this issue, we propose a novel strategy, which is called masked predicted pre-training, enabling robust feature learning from incomplete modality data. Additionally, in the fine-tuning phase, we utilize a knowledge distillation technique to align features between complete and missing modality data, simultaneously enhancing model robustness. Notably, we leverage the Holder pseudo-divergence instead of the KLD for distillation loss, offering improve mathematical interpretability and properties. Extensive experiments on the BRATS2018 and BRATS2020 datasets demonstrate significant performance enhancements compared to existing state-of-the-art methods.


Text-only Synthesis for Image Captioning

arXiv.org Artificial Intelligence

From paired image-text training to text-only training for image captioning, the pursuit of relaxing the requirements for high-cost and large-scale annotation of good quality data remains consistent. In this paper, we propose Text-only Synthesis for Image Captioning (ToCa), which further advances this relaxation with fewer human labor and less computing time. Specifically, we deconstruct caption text into structures and lexical words, which serve as the fundamental components of the caption. By combining different structures and lexical words as inputs to the large language model, massive captions that contain various patterns of lexical words are generated. This method not only approaches the target domain but also surpasses it by generating new captions, thereby enhancing the zero-shot generalization ability of the model. Considering the different levels of data access in the real world, we define three synthesis scenarios: cross-domain synthesis, in-domain synthesis, and data-efficient synthesis. Experiments in these scenarios demonstrate the generalizability, transferability and practicability of ToCa with a nearly 5 CIDEr improvement for zero-shot cross-domain captioning and a maximum increase of over 20 CIDEr for data-efficient captioning.


Coordinated Multi-Neighborhood Learning on a Directed Acyclic Graph

arXiv.org Machine Learning

Learning the structure of causal directed acyclic graphs (DAGs) is useful in many areas of machine learning and artificial intelligence, with wide applications. However, in the high-dimensional setting, it is challenging to obtain good empirical and theoretical results without strong and often restrictive assumptions. Additionally, it is questionable whether all of the variables purported to be included in the network are observable. It is of interest then to restrict consideration to a subset of the variables for relevant and reliable inferences. In fact, researchers in various disciplines can usually select a set of target nodes in the network for causal discovery. This paper develops a new constraint-based method for estimating the local structure around multiple user-specified target nodes, enabling coordination in structure learning between neighborhoods. Our method facilitates causal discovery without learning the entire DAG structure. We establish consistency results for our algorithm with respect to the local neighborhood structure of the target nodes in the true graph. Experimental results on synthetic and real-world data show that our algorithm is more accurate in learning the neighborhood structures with much less computational cost than standard methods that estimate the entire DAG. An R package implementing our methods may be accessed at https://github.com/stephenvsmith/CML.


Like Humans to Few-Shot Learning through Knowledge Permeation of Vision and Text

arXiv.org Artificial Intelligence

Few-shot learning aims to generalize the recognizer from seen categories to an entirely novel scenario. With only a few support samples, several advanced methods initially introduce class names as prior knowledge for identifying novel classes. However, obstacles still impede achieving a comprehensive understanding of how to harness the mutual advantages of visual and textual knowledge. In this paper, we propose a coherent Bidirectional Knowledge Permeation strategy called BiKop, which is grounded in a human intuition: A class name description offers a general representation, whereas an image captures the specificity of individuals. BiKop primarily establishes a hierarchical joint general-specific representation through bidirectional knowledge permeation. On the other hand, considering the bias of joint representation towards the base set, we disentangle base-class-relevant semantics during training, thereby alleviating the suppression of potential novel-class-relevant information. Experiments on four challenging benchmarks demonstrate the remarkable superiority of BiKop. Our code will be publicly available.


Generative Steganography Diffusion

arXiv.org Artificial Intelligence

Generative steganography (GS) is an emerging technique that generates stego images directly from secret data. Various GS methods based on GANs or Flow have been developed recently. However, existing GAN-based GS methods cannot completely recover the hidden secret data due to the lack of network invertibility, while Flow-based methods produce poor image quality due to the stringent reversibility restriction in each module. To address this issue, we propose a novel GS scheme called "Generative Steganography Diffusion" (GSD) by devising an invertible diffusion model named "StegoDiffusion". It not only generates realistic stego images but also allows for 100\% recovery of the hidden secret data. The proposed StegoDiffusion model leverages a non-Markov chain with a fast sampling technique to achieve efficient stego image generation. By constructing an ordinary differential equation (ODE) based on the transition probability of the generation process in StegoDiffusion, secret data and stego images can be converted to each other through the approximate solver of ODE -- Euler iteration formula, enabling the use of irreversible but more expressive network structures to achieve model invertibility. Our proposed GSD has the advantages of both reversibility and high performance, significantly outperforming existing GS methods in all metrics.


Simple Model Also Works: A Novel Emotion Recognition Network in Textual Conversation Based on Curriculum Learning Strategy

arXiv.org Artificial Intelligence

Emotion Recognition in Conversation (ERC) has emerged as a research hotspot in domains such as conversational robots and question-answer systems. How to efficiently and adequately retrieve contextual emotional cues has been one of the key challenges in the ERC task. Existing efforts do not fully model the context and employ complex network structures, resulting in excessive computational resource overhead without substantial performance improvement. In this paper, we propose a novel Emotion Recognition Network based on Curriculum Learning strategy (ERNetCL). The proposed ERNetCL primarily consists of Temporal Encoder (TE), Spatial Encoder (SE), and Curriculum Learning (CL) loss. We utilize TE and SE to combine the strengths of previous methods in a simplistic manner to efficiently capture temporal and spatial contextual information in the conversation. To simulate the way humans learn curriculum from easy to hard, we apply the idea of CL to the ERC task to progressively optimize the network parameters of ERNetCL. At the beginning of training, we assign lower learning weights to difficult samples. As the epoch increases, the learning weights for these samples are gradually raised. Extensive experiments on four datasets exhibit that our proposed method is effective and dramatically beats other baseline models.


A non-graphical representation of conditional independence via the neighbourhood lattice

arXiv.org Machine Learning

We introduce and study the neighbourhood lattice decomposition of a distribution, which is a compact, non-graphical representation of conditional independence that is valid in the absence of a faithful graphical representation. The idea is to view the set of neighbourhoods of a variable as a subset lattice, and partition this lattice into convex sublattices, each of which directly encodes a collection of conditional independence relations. We show that this decomposition exists in any compositional graphoid and can be computed efficiently and consistently in high-dimensions. {In particular, this gives a way to encode all of independence relations implied by a distribution that satisfies the composition axiom, which is strictly weaker than the faithfulness assumption that is typically assumed by graphical approaches.} We also discuss various special cases such as graphical models and projection lattices, each of which has intuitive interpretations. Along the way, we see how this problem is closely related to neighbourhood regression, which has been extensively studied in the context of graphical models and structural equations.