Goto

Collaborating Authors

 Zhou, Mingjie


AdaptiveLog: An Adaptive Log Analysis Framework with the Collaboration of Large and Small Language Model

arXiv.org Artificial Intelligence

Automated log analysis is crucial to ensure high availability and reliability of complex systems. The advent of LLMs in NLP has ushered in a new era of language model-driven automated log analysis, garnering significant interest. Within this field, two primary paradigms based on language models for log analysis have become prominent. Small Language Models (SLMs) follow the pre-train and fine-tune paradigm, focusing on the specific log analysis task through fine-tuning on supervised datasets. On the other hand, LLMs following the in-context learning paradigm, analyze logs by providing a few examples in prompt contexts without updating parameters. Despite their respective strengths, we notice that SLMs are more cost-effective but less powerful, whereas LLMs with large parameters are highly powerful but expensive and inefficient. To trade-off between the performance and inference costs of both models in automated log analysis, this paper introduces an adaptive log analysis framework known as AdaptiveLog, which effectively reduces the costs associated with LLM while ensuring superior results. This framework collaborates an LLM and a small language model, strategically allocating the LLM to tackle complex logs while delegating simpler logs to the SLM. Specifically, to efficiently query the LLM, we propose an adaptive selection strategy based on the uncertainty estimation of the SLM, where the LLM is invoked only when the SLM is uncertain. In addition, to enhance the reasoning ability of the LLM in log analysis tasks, we propose a novel prompt strategy by retrieving similar error-prone cases as the reference, enabling the model to leverage past error experiences and learn solutions from these cases. Extensive experiments demonstrate that AdaptiveLog achieves state-of-the-art results across different tasks, elevating the overall accuracy of log analysis while maintaining cost efficiency.


GPT4Table: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study

arXiv.org Artificial Intelligence

Large language models (LLMs) are becoming attractive as few-shot reasoners to solve Natural Language (NL)-related tasks. However, there is still much to learn about how well LLMs understand structured data, such as tables. While it is true that tables can be used as inputs to LLMs with serialization, there is a lack of comprehensive studies examining whether LLMs can truly comprehend such data. In this paper, we try to understand this by designing a benchmark to evaluate the structural understanding capabilities (SUC) of LLMs. The benchmark we create includes seven tasks, each with its own unique challenges, \eg, cell lookup, row retrieval, and size detection. We conduct a series of evaluations on GPT-3.5 and GPT-4. We find that the performance varied depending on several input choices, including table input format, content order, role prompting, and partition marks. Drawing from the insights gained through the benchmark evaluations, we propose \textit{self-augmentation} for effective structural prompting, such as critical value / range identification using LLMs' internal knowledge. When combined with carefully chosen input choices, these structural prompting methods lead to promising improvements in LLM performance on a variety of tabular tasks, \eg, TabFact($\uparrow2.31\%$), HybridQA($\uparrow2.13\%$), SQA($\uparrow2.72\%$), Feverous($\uparrow0.84\%$), and ToTTo($\uparrow5.68\%$). We believe that our benchmark and proposed prompting methods can serve as a simple yet generic selection for future research.


Modular Blended Attention Network for Video Question Answering

arXiv.org Artificial Intelligence

In multimodal machine learning tasks, it is due to the complexity of the assignments that the network structure, in most cases, is assembled in a sophisticated way. The holistic architecture can be separated into several logical parts according to the respective ends that the modules are devised to achieve. As the number of modalities of information representation increases, constructing ad hoc subnetworks for processing the data from divergent modalities while mediating the fusion of different information types has become a cumbersome and expensive problem. In this paper, we present an approach to facilitate the question with a reusable and composable neural unit; by connecting the units in series or parallel, the arduous network constructing of multimodal machine learning tasks will be accomplished in a much straightforward way. Additionally, through parameter sharing (weights replication) among the units, the space complexity will be significantly reduced. We have conducted experiments on three commonly used datasets; our method achieves impressive performance compared to several video QA baselines.


AnaMeta: A Table Understanding Dataset of Field Metadata Knowledge Shared by Multi-dimensional Data Analysis Tasks

arXiv.org Artificial Intelligence

Tabular data analysis is performed every day across various domains. It requires an accurate understanding of field semantics to correctly operate on table fields and find common patterns in daily analysis. In this paper, we introduce the AnaMeta dataset, a collection of 467k tables with derived supervision labels for four types of commonly used field metadata: measure/dimension dichotomy, common field roles, semantic field type, and default aggregation function. We evaluate a wide range of models for inferring metadata as the benchmark. We also propose a multi-encoder framework, called KDF, which improves the metadata understanding capability of tabular models by incorporating distribution and knowledge information. Furthermore, we propose four interfaces for incorporating field metadata into downstream analysis tasks.