Goto

Collaborating Authors

 Zhou, Bowen


GenPRM: Scaling Test-Time Compute of Process Reward Models via Generative Reasoning

arXiv.org Artificial Intelligence

Recent advancements in Large Language Models (LLMs) have shown that it is promising to utilize Process Reward Models (PRMs) as verifiers to enhance the performance of LLMs. However, current PRMs face three key challenges: (1) limited process supervision and generalization capabilities, (2) dependence on scalar value prediction without leveraging the generative abilities of LLMs, and (3) inability to scale the test-time compute of PRMs. In this work, we introduce GenPRM, a generative process reward model that performs explicit Chain-of-Thought (CoT) reasoning with code verification before providing judgment for each reasoning step. To obtain high-quality process supervision labels and rationale data, we propose Relative Progress Estimation (RPE) and a rationale synthesis framework that incorporates code verification. Experimental results on ProcessBench and several mathematical reasoning tasks show that GenPRM significantly outperforms prior PRMs with only 23K training data from MATH dataset. Through test-time scaling, a 1.5B GenPRM outperforms GPT-4o, and a 7B GenPRM surpasses Qwen2.5-Math-PRM-72B on ProcessBench. Additionally, GenPRM demonstrates strong abilities to serve as a critic model for policy model refinement. This work establishes a new paradigm for process supervision that bridges the gap between PRMs and critic models in LLMs. Our code, model, and data will be available in https://ryanliu112.github.io/GenPRM.


Technologies on Effectiveness and Efficiency: A Survey of State Spaces Models

arXiv.org Artificial Intelligence

State Space Models (SSMs) have emerged as a promising alternative to the popular transformer-based models and have been increasingly gaining attention. Compared to transformers, SSMs excel at tasks with sequential data or longer contexts, demonstrating comparable performances with significant efficiency gains. In this survey, we provide a coherent and systematic overview for SSMs, including their theoretical motivations, mathematical formulations, comparison with existing model classes, and various applications. We divide the SSM series into three main sections, providing a detailed introduction to the original SSM, the structured SSM represented by S4, and the selective SSM typified by Mamba. We put an emphasis on technicality, and highlight the various key techniques introduced to address the effectiveness and efficiency of SSMs. We hope this manuscript serves as an introduction for researchers to explore the theoretical foundations of SSMs.


Retrieval-Augmented Visual Question Answering via Built-in Autoregressive Search Engines

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) has emerged to address the knowledge-intensive visual question answering (VQA) task. Current methods mainly employ separate retrieval and generation modules to acquire external knowledge and generate answers, respectively. We propose ReAuSE, an alternative to the previous RAG model for the knowledge-based VQA task, which seamlessly integrates knowledge retriever into the generative multi-modal large language model, serving as a built-in search engine. Specifically, our model functions both as a generative retriever and an accurate answer generator. It not only helps retrieve documents from the knowledge base by producing identifiers for each document, but it also answers visual questions based on the retrieved documents. Furthermore, we propose a reinforced retrieval calibration module from relevance feedback to improve retrieval performance and align with the preferences for accurate answer generation. Extensive experiments on two representative OKVQA and A-OKVQA datasets demonstrate significant improvements ranging from 2.9\% to 9.6\% across all evaluation metrics when compared to strong baselines.


Can 1B LLM Surpass 405B LLM? Rethinking Compute-Optimal Test-Time Scaling

arXiv.org Artificial Intelligence

Test-Time Scaling (TTS) is an important method for improving the performance of Large Language Models (LLMs) by using additional computation during the inference phase. However, current studies do not systematically analyze how policy models, Process Reward Models (PRMs), and problem difficulty influence TTS. This lack of analysis limits the understanding and practical use of TTS methods. In this paper, we focus on two core questions: (1) What is the optimal approach to scale test-time computation across different policy models, PRMs, and problem difficulty levels? (2) To what extent can extended computation improve the performance of LLMs on complex tasks, and can smaller language models outperform larger ones through this approach? Through comprehensive experiments on MATH-500 and challenging AIME24 tasks, we have the following observations: (1) The compute-optimal TTS strategy is highly dependent on the choice of policy model, PRM, and problem difficulty. (2) With our compute-optimal TTS strategy, extremely small policy models can outperform larger models. For example, a 1B LLM can exceed a 405B LLM on MATH-500. Moreover, on both MATH-500 and AIME24, a 0.5B LLM outperforms GPT-4o, a 3B LLM surpasses a 405B LLM, and a 7B LLM beats o1 and DeepSeek-R1, while with higher inference efficiency. These findings show the significance of adapting TTS strategies to the specific characteristics of each task and model and indicate that TTS is a promising approach for enhancing the reasoning abilities of LLMs.


Process Reinforcement through Implicit Rewards

arXiv.org Artificial Intelligence

Dense process rewards have proven a more effective alternative to the sparse outcome-level rewards in the inference-time scaling of large language models (LLMs), particularly in tasks requiring complex multi-step reasoning. While dense rewards also offer an appealing choice for the reinforcement learning (RL) of LLMs since their fine-grained rewards have the potential to address some inherent issues of outcome rewards, such as training efficiency and credit assignment, this potential remains largely unrealized. This can be primarily attributed to the challenges of training process reward models (PRMs) online, where collecting high-quality process labels is prohibitively expensive, making them particularly vulnerable to reward hacking. To address these challenges, we propose PRIME (Process Reinforcement through IMplicit rEwards), which enables online PRM updates using only policy rollouts and outcome labels through implict process rewards. PRIME combines well with various advantage functions and forgoes the dedicated reward model training phrase that existing approaches require, substantially reducing the development overhead. We demonstrate PRIME's effectiveness on competitional math and coding. Starting from Qwen2.5-Math-7B-Base, PRIME achieves a 15.1% average improvement across several key reasoning benchmarks over the SFT model. Notably, our resulting model, Eurus-2-7B-PRIME, surpasses Qwen2.5-Math-7B-Instruct on seven reasoning benchmarks with 10% of its training data.


MedXpertQA: Benchmarking Expert-Level Medical Reasoning and Understanding

arXiv.org Artificial Intelligence

We introduce MedXpertQA, a highly challenging and comprehensive benchmark to evaluate expert-level medical knowledge and advanced reasoning. MedXpertQA includes 4,460 questions spanning 17 specialties and 11 body systems. It includes two subsets, Text for text evaluation and MM for multimodal evaluation. Notably, MM introduces expert-level exam questions with diverse images and rich clinical information, including patient records and examination results, setting it apart from traditional medical multimodal benchmarks with simple QA pairs generated from image captions. MedXpertQA applies rigorous filtering and augmentation to address the insufficient difficulty of existing benchmarks like MedQA, and incorporates specialty board questions to improve clinical relevance and comprehensiveness. We perform data synthesis to mitigate data leakage risk and conduct multiple rounds of expert reviews to ensure accuracy and reliability. We evaluate 16 leading models on MedXpertQA. Moreover, medicine is deeply connected to real-world decision-making, providing a rich and representative setting for assessing reasoning abilities beyond mathematics and code. To this end, we develop a reasoning-oriented subset to facilitate the assessment of o1-like models.


Dolphin: Closed-loop Open-ended Auto-research through Thinking, Practice, and Feedback

arXiv.org Artificial Intelligence

The scientific research paradigm is undergoing a profound transformation owing to the development of Artificial Intelligence (AI). Recent works demonstrate that various AI-assisted research methods can largely improve research efficiency by improving data analysis, accelerating computation, and fostering novel idea generation. To further move towards the ultimate goal (i.e., automatic scientific research), in this paper, we propose Dolphin, the first closed-loop open-ended auto-research framework to further build the entire process of human scientific research. Dolphin can generate research ideas, perform experiments, and get feedback from experimental results to generate higher-quality ideas. More specifically, Dolphin first generates novel ideas based on relevant papers which are ranked by the topic and task attributes. Then, the codes are automatically generated and debugged with the exception-traceback-guided local code structure. Finally, Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation. Experiments are conducted on the benchmark datasets of different topics and results show that Dolphin can generate novel ideas continuously and complete the experiment in a loop. We highlight that Dolphin can automatically propose methods that are comparable to the state-of-the-art in some tasks such as 2D image classification and 3D point classification.


Fourier Position Embedding: Enhancing Attention's Periodic Extension for Length Generalization

arXiv.org Artificial Intelligence

Extending the context length of Language Models (LMs) by improving Rotary Position Embedding (RoPE) has become a trend. While existing works mainly address RoPE's limitations within attention mechanism, this paper provides an analysis across nearly all parts of LMs, uncovering their adverse effects on length generalization for RoPE-based attention. Using Discrete Signal Processing theory, we show that RoPE enables periodic attention by implicitly achieving Non-Uniform Discrete Fourier Transform. However, this periodicity is undermined by the spectral damage caused by: 1) linear layers and activation functions outside of attention; 2) insufficiently trained frequency components brought by time-domain truncation. Building on our observations, we propose Fourier Position Embedding (FoPE), which enhances attention's frequency-domain properties to improve both its periodic extension and length generalization. FoPE constructs Fourier Series and zero-outs the destructive frequency components, increasing model robustness against the spectrum damage. Experiments across various model scales show that, within varying context windows, FoPE can maintain a more stable perplexity and a more consistent accuracy in a needle-in-haystack task compared to RoPE and ALiBi. Several analyses and ablations bring further support to our method and theoretical modeling.


Towards AI-$45^{\circ}$ Law: A Roadmap to Trustworthy AGI

arXiv.org Artificial Intelligence

Ensuring Artificial General Intelligence (AGI) reliably avoids harmful behaviors is a critical challenge, especially for systems with high autonomy or in safety-critical domains. Despite various safety assurance proposals and extreme risk warnings, comprehensive guidelines balancing AI safety and capability remain lacking. In this position paper, we propose the \textit{AI-\textbf{$45^{\circ}$} Law} as a guiding principle for a balanced roadmap toward trustworthy AGI, and introduce the \textit{Causal Ladder of Trustworthy AGI} as a practical framework. This framework provides a systematic taxonomy and hierarchical structure for current AI capability and safety research, inspired by Judea Pearl's ``Ladder of Causation''. The Causal Ladder comprises three core layers: the Approximate Alignment Layer, the Intervenable Layer, and the Reflectable Layer. These layers address the key challenges of safety and trustworthiness in AGI and contemporary AI systems. Building upon this framework, we define five levels of trustworthy AGI: perception, reasoning, decision-making, autonomy, and collaboration trustworthiness. These levels represent distinct yet progressive aspects of trustworthy AGI. Finally, we present a series of potential governance measures to support the development of trustworthy AGI.


How to Synthesize Text Data without Model Collapse?

arXiv.org Artificial Intelligence

Model collapse in synthetic data indicates that iterative training on self-generated data leads to a gradual decline in performance. With the proliferation of AI models, synthetic data will fundamentally reshape the web data ecosystem. Future GPT-{n} models will inevitably be trained on a blend of synthetic and humanproduced data. In this paper, we focus on two questions: what is the impact of synthetic data on language model training, and how to synthesize data without model collapse? We further conduct statistical analysis on synthetic data to uncover distributional shift phenomenon and over-concentration of n-gram features. Inspired by the above findings, we propose token editing on human-produced data to obtain semi-synthetic data. As a proof of concept, we theoretically demonstrate that token-level editing can prevent model collapse, as the test error is constrained by a finite upper bound. We conduct extensive experiments on pre-training from scratch, continual pre-training, and supervised finetuning. The results validate our theoretical proof that token-level editing improves data quality and enhances model performance. As generative artificial intelligence (AI) (Rombach et al., 2021; Achiam et al., 2023) becomes increasingly prevalent in research and industry, synthetic data will proliferate throughout the web data ecosystem. Consequently, future training of GPT-{n} on a mixture of synthetic and humanproduced data will be inevitable. Thus, model collapse is a critical concern that must be considered when training models on synthetic data. Model collapse refers to a degenerative process in which the output data of learned generative models contaminates the training sets of subsequent generations. As shown in Figure 1, iterative training coupled with data synthesis induces a progressive accumulation of test errors (Shumailov et al., 2024; Dohmatob et al., 2024a). Consequently, generative models increasingly overfit to synthetic data distributions, failing to capture the complexity in human-produced data.