Zhong, Jia-Xing
Generative AI for Cel-Animation: A Survey
Tang, Yunlong, Guo, Junjia, Liu, Pinxin, Wang, Zhiyuan, Hua, Hang, Zhong, Jia-Xing, Xiao, Yunzhong, Huang, Chao, Song, Luchuan, Liang, Susan, Song, Yizhi, He, Liu, Bi, Jing, Feng, Mingqian, Li, Xinyang, Zhang, Zeliang, Xu, Chenliang
Traditional Celluloid (Cel) Animation production pipeline encompasses multiple essential steps, including storyboarding, layout design, keyframe animation, inbetweening, and colorization, which demand substantial manual effort, technical expertise, and significant time investment. These challenges have historically impeded the efficiency and scalability of Cel-Animation production. The rise of generative artificial intelligence (GenAI), encompassing large language models, multimodal models, and diffusion models, offers innovative solutions by automating tasks such as inbetween frame generation, colorization, and storyboard creation. This survey explores how GenAI integration is revolutionizing traditional animation workflows by lowering technical barriers, broadening accessibility for a wider range of creators through tools like AniDoc, ToonCrafter, and AniSora, and enabling artists to focus more on creative expression and artistic innovation. Despite its potential, issues such as maintaining visual consistency, ensuring stylistic coherence, and addressing ethical considerations continue to pose challenges. Furthermore, this paper discusses future directions and explores potential advancements in AI-assisted animation. For further exploration and resources, please visit our GitHub repository: https://github.com/yunlong10/Awesome-AI4Animation
Swiss DINO: Efficient and Versatile Vision Framework for On-device Personal Object Search
Paramonov, Kirill, Zhong, Jia-Xing, Michieli, Umberto, Moon, Jijoong, Ozay, Mete
In this paper, we address a recent trend in robotic home appliances to include vision systems on personal devices, capable of personalizing the appliances on the fly. In particular, we formulate and address an important technical task of personal object search, which involves localization and identification of personal items of interest on images captured by robotic appliances, with each item referenced only by a few annotated images. The task is crucial for robotic home appliances and mobile systems, which need to process personal visual scenes or to operate with particular personal objects (e.g., for grasping or navigation). In practice, personal object search presents two main technical challenges. First, a robot vision system needs to be able to distinguish between many fine-grained classes, in the presence of occlusions and clutter. Second, the strict resource requirements for the on-device system restrict the usage of most state-of-the-art methods for few-shot learning and often prevent on-device adaptation. In this work, we propose Swiss DINO: a simple yet effective framework for one-shot personal object search based on the recent DINOv2 transformer model, which was shown to have strong zero-shot generalization properties. Swiss DINO handles challenging on-device personalized scene understanding requirements and does not require any adaptation training. We show significant improvement (up to 55%) in segmentation and recognition accuracy compared to the common lightweight solutions, and significant footprint reduction of backbone inference time (up to 100x) and GPU consumption (up to 10x) compared to the heavy transformer-based solutions.
SPEAR: Receiver-to-Receiver Acoustic Neural Warping Field
He, Yuhang, Xu, Shitong, Zhong, Jia-Xing, Shin, Sangyun, Trigoni, Niki, Markham, Andrew
Unlike traditional source-to-receiver modelling methods that require prior space acoustic properties knowledge to rigorously model audio propagation from source to receiver, we propose to predict by warping the spatial acoustic effects from one reference receiver position to another target receiver position, so that the warped audio essentially accommodates all spatial acoustic effects belonging to the target position. SPEAR can be trained in a data much more readily accessible manner, in which we simply ask two robots to independently record spatial audio at different positions. We further theoretically prove the universal existence of the warping field if and only if one audio source presents. Three physical principles are incorporated to guide SPEAR network design, leading to the learned warping field physically meaningful. We demonstrate SPEAR superiority on both synthetic, photo-realistic and real-world dataset, showing the huge potential of SPEAR to various down-stream robotic tasks.
Multi-body SE(3) Equivariance for Unsupervised Rigid Segmentation and Motion Estimation
Zhong, Jia-Xing, Cheng, Ta-Ying, He, Yuhang, Lu, Kai, Zhou, Kaichen, Markham, Andrew, Trigoni, Niki
A truly generalizable approach to rigid segmentation and motion estimation is fundamental to 3D understanding of articulated objects and moving scenes. In view of the closely intertwined relationship between segmentation and motion estimates, we present an SE(3) equivariant architecture and a training strategy to tackle this task in an unsupervised manner. Our architecture is composed of two interconnected, lightweight heads. These heads predict segmentation masks using point-level invariant features and estimate motion from SE(3) equivariant features, all without the need for category information. Our training strategy is unified and can be implemented online, which jointly optimizes the predicted segmentation and motion by leveraging the interrelationships among scene flow, segmentation mask, and rigid transformations. We conduct experiments on four datasets to demonstrate the superiority of our method. The results show that our method excels in both model performance and computational efficiency, with only 0.25M parameters and 0.92G FLOPs. To the best of our knowledge, this is the first work designed for category-agnostic part-level SE(3) equivariance in dynamic point clouds.
Uncertainty-aware INVASE: Enhanced Breast Cancer Diagnosis Feature Selection
Zhong, Jia-Xing, Zhang, Hongbo
In this paper, we present an uncertainty-aware INVASE to quantify predictive confidence of healthcare problem. By introducing learnable Gaussian distributions, we lever-age their variances to measure the degree of uncertainty. Based on the vanilla INVASE, two additional modules are proposed, i.e., an uncertainty quantification module in the predictor, and a reward shaping module in the selector. We conduct extensive experiments on UCI-WDBC dataset. Notably, our method eliminates almost all predictive bias with only about 20% queries, while the uncertainty-agnostic counterpart requires nearly 100% queries. The open-source implementation with a detailed tutorial is available at https://github.com/jx-zhong-for-academic-purpose/Uncertainty-aware-INVASE/blob/main/tutorialinvase%2B.ipynb.
ARMIN: Towards a More Efficient and Light-weight Recurrent Memory Network
Li, Zhangheng, Zhong, Jia-Xing, Huang, Jingjia, Zhang, Tao, Li, Thomas, Li, Ge
In recent years, memory-augmented neural networks(MANNs) have shown promising power to enhance the memory ability of neural networks for sequential processing tasks. However, previous MANNs suffer from complex memory addressing mechanism, making them relatively hard to train and causing computational overheads. Moreover, many of them reuse the classical RNN structure such as LSTM for memory processing, causing inefficient exploitations of memory information. In this paper, we introduce a novel MANN, the Auto-addressing and Recurrent Memory Integrating Network (ARMIN) to address these issues. The ARMIN only utilizes hidden state ht for automatic memory addressing, and uses a novel RNN cell for refined integration of memory information. Empirical results on a variety of experiments demonstrate that the ARMIN is more light-weight and efficient compared to existing memory networks. Moreover, we demonstrate that the ARMIN can achieve much lower computational overhead than vanilla LSTM while keeping similar performances. Codes are available on github.com/zoharli/armin.