Goto

Collaborating Authors

 Zhiting Hu


Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation

Neural Information Processing Systems

Generating long and coherent reports to describe medical images poses challenges to bridging visual patterns with informative human linguistic descriptions. We propose a novel Hybrid Retrieval-Generation Reinforced Agent (HRGR-Agent) which reconciles traditional retrieval-based approaches populated with human prior knowledge, with modern learning-based approaches to achieve structured, robust, and diverse report generation. HRGR-Agent employs a hierarchical decisionmaking procedure. For each sentence, a high-level retrieval policy module chooses to either retrieve a template sentence from an off-the-shelf template database, or invoke a low-level generation module to generate a new sentence. HRGR-Agent is updated via reinforcement learning, guided by sentence-level and word-level rewards. Experiments show that our approach achieves the state-of-the-art results on two medical report datasets, generating well-balanced structured sentences with robust coverage of heterogeneous medical report contents. In addition, our model achieves the highest detection precision of medical abnormality terminologies, and improved human evaluation performance.


Deep Generative Models with Learnable Knowledge Constraints

Neural Information Processing Systems

The broad set of deep generative models (DGMs) has achieved remarkable advances. However, it is often difficult to incorporate rich structured domain knowledge with the end-to-end DGMs. Posterior regularization (PR) offers a principled framework to impose structured constraints on probabilistic models, but has limited applicability to the diverse DGMs that can lack a Bayesian formulation or even explicit density evaluation. PR also requires constraints to be fully specified a priori, which is impractical or suboptimal for complex knowledge with learnable uncertain parts. In this paper, we establish mathematical correspondence between PR and reinforcement learning (RL), and, based on the connection, expand PR to learn constraints as the extrinsic reward in RL. The resulting algorithm is modelagnostic to apply to any DGMs, and is flexible to adapt arbitrary constraints with the model jointly. Experiments on human image generation and templated sentence generation show models with learned knowledge constraints by our algorithm greatly improve over base generative models.



Unsupervised Text Style Transfer using Language Models as Discriminators

Neural Information Processing Systems

Binary classifiers are often employed as discriminators in GAN-based unsupervised style transfer systems to ensure that transferred sentences are similar to sentences in the target domain. One difficulty with this approach is that the error signal provided by the discriminator can be unstable and is sometimes insufficient to train the generator to produce fluent language. In this paper, we propose a new technique that uses a target domain language model as the discriminator, providing richer and more stable token-level feedback during the learning process. We train the generator to minimize the negative log likelihood (NLL) of generated sentences, evaluated by the language model. By using a continuous approximation of discrete sampling under the generator, our model can be trained using back-propagation in an end-to-end fashion. Moreover, our empirical results show that when using a language model as a structured discriminator, it is possible to forgo adversarial steps during training, making the process more stable. We compare our model with previous work that uses convolutional networks (CNNs) as discriminators, as well as a broad set of other approaches. Results show that the proposed method achieves improved performance on three tasks: word substitution decipherment, sentiment modification, and related language translation.



Learning Data Manipulation for Augmentation and Weighting

Neural Information Processing Systems

Manipulating data, such as weighting data examples or augmenting with new instances, has been increasingly used to improve model training. Previous work has studied various rule-or learning-based approaches designed for specific types of data manipulation. In this work, we propose a new method that supports learning different manipulation schemes with the same gradient-based algorithm. Our approach builds upon a recent connection of supervised learning and reinforcement learning (RL), and adapts an off-the-shelf reward learning algorithm from RL for joint data manipulation learning and model training.


Stochastic Variational Deep Kernel Learning

Neural Information Processing Systems

Deep kernel learning combines the non-parametric flexibility of kernel methods with the inductive biases of deep learning architectures. We propose a novel deep kernel learning model and stochastic variational inference procedure which generalizes deep kernel learning approaches to enable classification, multi-task learning, additive covariance structures, and stochastic gradient training. Specifically, we apply additive base kernels to subsets of output features from deep neural architectures, and jointly learn the parameters of the base kernels and deep network through a Gaussian process marginal likelihood objective. Within this framework, we derive an efficient form of stochastic variational inference which leverages local kernel interpolation, inducing points, and structure exploiting algebra. We show improved performance over stand alone deep networks, SVMs, and state of the art scalable Gaussian processes on several classification benchmarks, including an airline delay dataset containing 6 million training points, CIFAR, and ImageNet.


Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation

Neural Information Processing Systems

Generating long and coherent reports to describe medical images poses challenges to bridging visual patterns with informative human linguistic descriptions. We propose a novel Hybrid Retrieval-Generation Reinforced Agent (HRGR-Agent) which reconciles traditional retrieval-based approaches populated with human prior knowledge, with modern learning-based approaches to achieve structured, robust, and diverse report generation. HRGR-Agent employs a hierarchical decisionmaking procedure. For each sentence, a high-level retrieval policy module chooses to either retrieve a template sentence from an off-the-shelf template database, or invoke a low-level generation module to generate a new sentence. HRGR-Agent is updated via reinforcement learning, guided by sentence-level and word-level rewards. Experiments show that our approach achieves the state-of-the-art results on two medical report datasets, generating well-balanced structured sentences with robust coverage of heterogeneous medical report contents. In addition, our model achieves the highest detection precision of medical abnormality terminologies, and improved human evaluation performance.


Deep Generative Models with Learnable Knowledge Constraints

Neural Information Processing Systems

The broad set of deep generative models (DGMs) has achieved remarkable advances. However, it is often difficult to incorporate rich structured domain knowledge with the end-to-end DGMs. Posterior regularization (PR) offers a principled framework to impose structured constraints on probabilistic models, but has limited applicability to the diverse DGMs that can lack a Bayesian formulation or even explicit density evaluation. PR also requires constraints to be fully specified a priori, which is impractical or suboptimal for complex knowledge with learnable uncertain parts. In this paper, we establish mathematical correspondence between PR and reinforcement learning (RL), and, based on the connection, expand PR to learn constraints as the extrinsic reward in RL. The resulting algorithm is modelagnostic to apply to any DGMs, and is flexible to adapt arbitrary constraints with the model jointly. Experiments on human image generation and templated sentence generation show models with learned knowledge constraints by our algorithm greatly improve over base generative models.