Zheng, Zian
MixEval-X: Any-to-Any Evaluations from Real-World Data Mixtures
Ni, Jinjie, Song, Yifan, Ghosal, Deepanway, Li, Bo, Zhang, David Junhao, Yue, Xiang, Xue, Fuzhao, Zheng, Zian, Zhang, Kaichen, Shah, Mahir, Jain, Kabir, You, Yang, Shieh, Michael
Perceiving and generating diverse modalities are crucial for AI models to effectively learn from and engage with real-world signals, necessitating reliable evaluations for their development. We identify two major issues in current evaluations: (1) inconsistent standards, shaped by different communities with varying protocols and maturity levels; and (2) significant query, grading, and generalization biases. To address these, we introduce MixEval-X, the first any-to-any, real-world benchmark designed to optimize and standardize evaluations across diverse input and output modalities. We propose multi-modal benchmark mixture and adaptation-rectification pipelines to reconstruct real-world task distributions, ensuring evaluations generalize effectively to real-world use cases. Extensive meta-evaluations show our approach effectively aligns benchmark samples with real-world task distributions. Meanwhile, MixEval-X's model rankings correlate strongly with that of crowd-sourced real-world evaluations (up to 0.98) while being much more efficient. We provide comprehensive leaderboards to rerank existing models and organizations and offer insights to enhance understanding of multi-modal evaluations and inform future research.
OpenMoE: An Early Effort on Open Mixture-of-Experts Language Models
Xue, Fuzhao, Zheng, Zian, Fu, Yao, Ni, Jinjie, Zheng, Zangwei, Zhou, Wangchunshu, You, Yang
To help the open-source community have a better understanding of Mixture-of-Experts (MoE) based large language models (LLMs), we train and release OpenMoE, a series of fully open-sourced and reproducible decoder-only MoE LLMs, ranging from 650M to 34B parameters and trained on up to over 1T tokens. Our investigation confirms that MoE-based LLMs can offer a more favorable cost-effectiveness trade-off than dense LLMs, highlighting the potential effectiveness for future LLM development. One more important contribution of this study is an in-depth analysis of the routing mechanisms within our OpenMoE models, leading to three significant findings: Context-Independent Specialization, Early Routing Learning, and Drop-towards-the-End. We discovered that routing decisions in MoE models are predominantly based on token IDs, with minimal context relevance. The token-to-expert assignments are determined early in the pre-training phase and remain largely unchanged. This imperfect routing can result in performance degradation, particularly in sequential tasks like multi-turn conversations, where tokens appearing later in a sequence are more likely to be dropped. Finally, we rethink our design based on the above-mentioned observations and analysis. To facilitate future MoE LLM development, we propose potential strategies for mitigating the issues we found and further improving off-the-shelf MoE LLM designs.