Goto

Collaborating Authors

 Zheng, Qinqing


Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

arXiv.org Artificial Intelligence

Large Language Models (LLMs) excel at reasoning and planning when trained on chainof-thought (CoT) data, where the step-by-step thought process is explicitly outlined by text tokens. However, this results in lengthy inputs where many words support textual coherence rather than core reasoning information, and processing these inputs consumes substantial computation resources. In this work, we propose a hybrid representation of the reasoning process, where we partially abstract away the initial reasoning steps using latent discrete tokens generated by VQ-VAE, significantly reducing the length of reasoning traces. We explore the use of latent trace abstractions in two scenarios: 1) training the model from scratch for the Keys-Finding Maze problem, 2) fine-tuning LLMs on this hybrid data with an extended vocabulary including unseen latent tokens, for both logical and mathematical reasoning problems. To facilitate effective learning, we introduce a simple training procedure that randomly mixes latent and text tokens, which enables fast adaptation to new latent tokens. Our approach consistently outperforms the baselines methods in various benchmarks.


Online Intrinsic Rewards for Decision Making Agents from Large Language Model Feedback

arXiv.org Artificial Intelligence

Automatically synthesizing dense rewards from natural language descriptions is a promising paradigm in reinforcement learning (RL), with applications to sparse reward problems, open-ended exploration, and hierarchical skill design. Recent works have made promising steps by exploiting the prior knowledge of large language models (LLMs). However, these approaches suffer from important limitations: they are either not scalable to problems requiring billions of environment samples, due to requiring LLM annotations for each observation, or they require a diverse offline dataset, which may not exist or be impossible to collect. In this work, we address these limitations through a combination of algorithmic and systems-level contributions. We propose \oni, a distributed architecture that simultaneously learns an RL policy and an intrinsic reward function using LLM feedback. Our approach annotates the agent's collected experience via an asynchronous LLM server, which is then distilled into an intrinsic reward model. We explore a range of algorithmic choices for reward modeling with varying complexity, including hashing, classification, and ranking models. By studying their relative tradeoffs, we shed light on questions regarding intrinsic reward design for sparse reward problems. Our approach achieves state-of-the-art performance across a range of challenging, sparse reward tasks from the NetHack Learning Environment in a simple unified process, solely using the agent's gathered experience, without requiring external datasets. We make our code available at \url{https://github.com/facebookresearch/oni}.


Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces

arXiv.org Artificial Intelligence

In human cognition theory, human thinking is governed by two systems: the fast and intuitive System 1 and the slower but more deliberative System 2. Recent studies have shown that incorporating System 2 process into Transformers including large language models (LLMs), significantly enhances their reasoning capabilities. Nevertheless, models that purely resemble System 2 thinking require substantially higher computational costs and are much slower to respond. To address this challenge, we present Dualformer, a single Transformer model that seamlessly integrates both the fast and slow reasoning modes. Dualformer is obtained by training on data with randomized reasoning traces, where different parts of the traces are dropped during training. The dropping strategies are specifically tailored according to the trace structure, analogous to analyzing our thinking process and creating shortcuts with patterns. At inference time, our model can be configured to output only the solutions (fast mode) or both the reasoning chain and the final solution (slow mode), or automatically decide which mode to engage (auto mode). In all cases, Dualformer outperforms the corresponding baseline models in both performance and computational efficiency: (1) in slow mode, Dualformer optimally solves unseen 30 x 30 maze navigation tasks 97.6% of the time, surpassing the Searchformer (trained on data with complete reasoning traces) baseline performance of 93.3%, while only using 45.5% fewer reasoning steps; (2) in fast mode, Dualformer completes those tasks with an 80% optimal rate, significantly outperforming the Solution-Only model (trained on solution-only data), which has an optimal rate of only 30%. For math problems, our techniques have also achieved improved performance with LLM fine-tuning, showing its generalization beyond task-specific models.


Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping

arXiv.org Artificial Intelligence

While Transformers have enabled tremendous progress in various application settings, such architectures still trail behind traditional symbolic planners for solving complex decision making tasks. In this work, we demonstrate how to train Transformers to solve complex planning tasks. This is accomplished by training an encoder-decoder Transformer model to predict the search dynamics of the $A^*$ search algorithm. We fine tune this model to obtain a Searchformer, a Transformer model that optimally solves previously unseen Sokoban puzzles 93.7% of the time, while using up to 26.8% fewer search steps than the $A^*$ implementation that was used for training initially. In our training method, $A^*$'s search dynamics are expressed as a token sequence outlining when task states are added and removed into the search tree during symbolic planning. Searchformer significantly outperforms baselines that predict the optimal plan directly with a 5-10$\times$ smaller model size and a 10$\times$ smaller training dataset. Lastly, we demonstrate how Searchformer scales to larger and more complex decision making tasks with improved percentage of solved tasks and shortened search dynamics.


Diffusion World Model

arXiv.org Artificial Intelligence

We introduce Diffusion World Model (DWM), a conditional diffusion model capable of predicting multistep future states and rewards concurrently. As opposed to traditional one-step dynamics models, DWM offers long-horizon predictions in a single forward pass, eliminating the need for recursive queries. We integrate DWM into model-based value estimation, where the short-term return is simulated by future trajectories sampled from DWM. In the context of offline reinforcement learning, DWM can be viewed as a conservative value regularization through generative modeling. Alternatively, it can be seen as a data source that enables offline Q-learning with synthetic data. Our experiments on the D4RL dataset confirm the robustness of DWM to long-horizon simulation. In terms of absolute performance, DWM significantly surpasses one-step dynamics models with a $44\%$ performance gain, and achieves state-of-the-art performance.


Guided Flows for Generative Modeling and Decision Making

arXiv.org Machine Learning

Classifier-free guidance is a key component for enhancing the performance of conditional generative models across diverse tasks. While it has previously demonstrated remarkable improvements for the sample quality, it has only been exclusively employed for diffusion models. In this paper, we integrate classifier-free guidance into Flow Matching (FM) models, an alternative simulation-free approach that trains Continuous Normalizing Flows (CNFs) based on regressing vector fields. We explore the usage of \emph{Guided Flows} for a variety of downstream applications. We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text-to-speech synthesis, boasting state-of-the-art performance. Notably, we are the first to apply flow models for plan generation in the offline reinforcement learning setting, showcasing a 10x speedup in computation compared to diffusion models while maintaining comparable performance.


Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories

arXiv.org Artificial Intelligence

Natural agents can effectively learn from multiple data sources that differ in size, quality, and types of measurements. We study this heterogeneity in the context of offline reinforcement learning (RL) by introducing a new, practically motivated semi-supervised setting. Here, an agent has access to two sets of trajectories: labelled trajectories containing state, action and reward triplets at every timestep, along with unlabelled trajectories that contain only state and reward information. For this setting, we develop and study a simple meta-algorithmic pipeline that learns an inverse dynamics model on the labelled data to obtain proxy-labels for the unlabelled data, followed by the use of any offline RL algorithm on the true and proxy-labelled trajectories. Empirically, we find this simple pipeline to be highly successful -- on several D4RL benchmarks~\cite{fu2020d4rl}, certain offline RL algorithms can match the performance of variants trained on a fully labelled dataset even when we label only 10\% of trajectories which are highly suboptimal. To strengthen our understanding, we perform a large-scale controlled empirical study investigating the interplay of data-centric properties of the labelled and unlabelled datasets, with algorithmic design choices (e.g., choice of inverse dynamics, offline RL algorithm) to identify general trends and best practices for training RL agents on semi-supervised offline datasets.


Dual RL: Unification and New Methods for Reinforcement and Imitation Learning

arXiv.org Artificial Intelligence

The goal of reinforcement learning (RL) is to maximize the expected cumulative return. It has been shown that this objective can be represented by an optimization problem of the state-action visitation distribution under linear constraints [52]. The dual problem of this formulation, which we refer to as dual RL, is unconstrained and easier to optimize. We show that several state-of-the-art off-policy deep reinforcement learning (RL) algorithms, under both online and offline, RL and imitation learning (IL) settings, can be viewed as dual RL approaches in a unified framework. This unification provides a common ground to study and identify the components that contribute to the success of these methods and also reveals the common shortcomings across methods with new insights for improvement. Our analysis shows that prior off-policy imitation learning methods are based on an unrealistic coverage assumption and are minimizing a particular f-divergence between the visitation distributions of the learned policy and the expert policy. We propose a new method using a simple modification to the dual RL framework that allows for performant imitation learning with arbitrary off-policy data to obtain near-expert performance, without learning a discriminator. Further, by framing a recent SOTA offline RL method XQL [23] in the dual RL framework, we propose alternative choices to replace the Gumbel regression loss, which achieve improved performance and resolve the training instability issue of XQL. Project code and details can be found at this hari-sikchi.github.io/dual-rl.


Latent State Marginalization as a Low-cost Approach for Improving Exploration

arXiv.org Artificial Intelligence

While the maximum entropy (MaxEnt) reinforcement learning (RL) framework -- often touted for its exploration and robustness capabilities -- is usually motivated from a probabilistic perspective, the use of deep probabilistic models has not gained much traction in practice due to their inherent complexity. In this work, we propose the adoption of latent variable policies within the MaxEnt framework, which we show can provably approximate any policy distribution, and additionally, naturally emerges under the use of world models with a latent belief state. We discuss why latent variable policies are difficult to train, how naive approaches can fail, then subsequently introduce a series of improvements centered around low-cost marginalization of the latent state, allowing us to make full use of the latent state at minimal additional cost. We instantiate our method under the actor-critic framework, marginalizing both the actor and critic. The resulting algorithm, referred to as Stochastic Marginal Actor-Critic (SMAC), is simple yet effective. We experimentally validate our method on continuous control tasks, showing that effective marginalization can lead to better exploration and more robust training. Our implementation is open sourced at https://github.com/zdhNarsil/Stochastic-Marginal-Actor-Critic.


Reliable Conditioning of Behavioral Cloning for Offline Reinforcement Learning

arXiv.org Artificial Intelligence

Behavioral cloning (BC) provides a straightforward solution to offline RL by mimicking offline trajectories via supervised learning. Recent advances (Chen et al., 2021; Janner et al., 2021; Emmons et al., 2021) have shown that by conditioning on desired future returns, BC can perform competitively to their value-based counterparts, while enjoying much more simplicity and training stability. While promising, we show that these methods can be unreliable, as their performance may degrade significantly when conditioned on high, out-of-distribution (ood) returns. This is crucial in practice, as we often expect the policy to perform better than the offline dataset by conditioning on an ood value. We show that this unreliability arises from both the suboptimality of training data and model architectures. We propose ConserWeightive Behavioral Cloning (CWBC), a simple and effective method for improving the reliability of conditional BC with two key components: trajectory weighting and conservative regularization. Trajectory weighting upweights the high-return trajectories to reduce the train-test gap for BC methods, while conservative regularizer encourages the policy to stay close to the data distribution for ood conditioning. We study CWBC in the context of RvS (Emmons et al., 2021) and Decision Transformers (Chen et al., 2021), and show that CWBC significantly boosts their performance on various benchmarks.