Zheng, Junwei
Mitigating Label Noise using Prompt-Based Hyperbolic Meta-Learning in Open-Set Domain Generalization
Peng, Kunyu, Wen, Di, Saquib, Sarfraz M., Chen, Yufan, Zheng, Junwei, Schneider, David, Yang, Kailun, Wu, Jiamin, Roitberg, Alina, Stiefelhagen, Rainer
Open-Set Domain Generalization (OSDG) is a challenging task requiring models to accurately predict familiar categories while minimizing confidence for unknown categories to effectively reject them in unseen domains. While the OSDG field has seen considerable advancements, the impact of label noise--a common issue in real-world datasets--has been largely overlooked. Label noise can mislead model optimization, thereby exacerbating the challenges of open-set recognition in novel domains. In this study, we take the first step towards addressing Open-Set Domain Generalization under Noisy Labels (OSDG-NL) by constructing dedicated benchmarks derived from widely used OSDG datasets, including PACS and DigitsDG. We evaluate baseline approaches by integrating techniques from both label denoising and OSDG methodologies, highlighting the limitations of existing strategies in handling label noise effectively. To address these limitations, we propose HyProMeta, a novel framework that integrates hyperbolic category prototypes for label noise-aware meta-learning alongside a learnable new-category agnostic prompt designed to enhance generalization to unseen classes. Our extensive experiments demonstrate the superior performance of HyProMeta compared to state-of-the-art methods across the newly established benchmarks. The source code of this work is released at https://github.com/KPeng9510/HyProMeta.
Referring Atomic Video Action Recognition
Peng, Kunyu, Fu, Jia, Yang, Kailun, Wen, Di, Chen, Yufan, Liu, Ruiping, Zheng, Junwei, Zhang, Jiaming, Sarfraz, M. Saquib, Stiefelhagen, Rainer, Roitberg, Alina
We introduce a new task called Referring Atomic Video Action Recognition (RAVAR), aimed at identifying atomic actions of a particular person based on a textual description and the video data of this person. This task differs from traditional action recognition and localization, where predictions are delivered for all present individuals. In contrast, we focus on recognizing the correct atomic action of a specific individual, guided by text. To explore this task, we present the RefAVA dataset, containing 36,630 instances with manually annotated textual descriptions of the individuals. To establish a strong initial benchmark, we implement and validate baselines from various domains, e.g., atomic action localization, video question answering, and text-video retrieval. Since these existing methods underperform on RAVAR, we introduce RefAtomNet -- a novel cross-stream attention-driven method specialized for the unique challenges of RAVAR: the need to interpret a textual referring expression for the targeted individual, utilize this reference to guide the spatial localization and harvest the prediction of the atomic actions for the referring person. The key ingredients are: (1) a multi-stream architecture that connects video, text, and a new location-semantic stream, and (2) cross-stream agent attention fusion and agent token fusion which amplify the most relevant information across these streams and consistently surpasses standard attention-based fusion on RAVAR. Extensive experiments demonstrate the effectiveness of RefAtomNet and its building blocks for recognizing the action of the described individual. The dataset and code will be made publicly available at https://github.com/KPeng9510/RAVAR.
Skeleton-Based Human Action Recognition with Noisy Labels
Xu, Yi, Peng, Kunyu, Wen, Di, Liu, Ruiping, Zheng, Junwei, Chen, Yufan, Zhang, Jiaming, Roitberg, Alina, Yang, Kailun, Stiefelhagen, Rainer
Understanding human actions from body poses is critical for assistive robots sharing space with humans in order to make informed and safe decisions about the next interaction. However, precise temporal localization and annotation of activity sequences is time-consuming and the resulting labels are often noisy. If not effectively addressed, label noise negatively affects the model's training, resulting in lower recognition quality. Despite its importance, addressing label noise for skeleton-based action recognition has been overlooked so far. In this study, we bridge this gap by implementing a framework that augments well-established skeleton-based human action recognition methods with label-denoising strategies from various research areas to serve as the initial benchmark. Observations reveal that these baselines yield only marginal performance when dealing with sparse skeleton data. Consequently, we introduce a novel methodology, NoiseEraSAR, which integrates global sample selection, co-teaching, and Cross-Modal Mixture-of-Experts (CM-MOE) strategies, aimed at mitigating the adverse impacts of label noise. Our proposed approach demonstrates better performance on the established benchmark, setting new state-of-the-art standards. The source code for this study will be made accessible at https://github.com/xuyizdby/NoiseEraSAR.
Fourier Prompt Tuning for Modality-Incomplete Scene Segmentation
Liu, Ruiping, Zhang, Jiaming, Peng, Kunyu, Chen, Yufan, Cao, Ke, Zheng, Junwei, Sarfraz, M. Saquib, Yang, Kailun, Stiefelhagen, Rainer
Integrating information from multiple modalities enhances the robustness of scene perception systems in autonomous vehicles, providing a more comprehensive and reliable sensory framework. However, the modality incompleteness in multi-modal segmentation remains under-explored. In this work, we establish a task called Modality-Incomplete Scene Segmentation (MISS), which encompasses both system-level modality absence and sensor-level modality errors. To avoid the predominant modality reliance in multi-modal fusion, we introduce a Missing-aware Modal Switch (MMS) strategy to proactively manage missing modalities during training. Utilizing bit-level batch-wise sampling enhances the model's performance in both complete and incomplete testing scenarios. Furthermore, we introduce the Fourier Prompt Tuning (FPT) method to incorporate representative spectral information into a limited number of learnable prompts that maintain robustness against all MISS scenarios. Akin to fine-tuning effects but with fewer tunable parameters (1.1%). Extensive experiments prove the efficacy of our proposed approach, showcasing an improvement of 5.84% mIoU over the prior state-of-the-art parameter-efficient methods in modality missing. The source code will be publicly available at https://github.com/RuipingL/MISS.
Elevating Skeleton-Based Action Recognition with Efficient Multi-Modality Self-Supervision
Wei, Yiping, Peng, Kunyu, Roitberg, Alina, Zhang, Jiaming, Zheng, Junwei, Liu, Ruiping, Chen, Yufan, Yang, Kailun, Stiefelhagen, Rainer
Self-supervised representation learning for human action recognition has developed rapidly in recent years. Most of the existing works are based on skeleton data while using a multi-modality setup. These works overlooked the differences in performance among modalities, which led to the propagation of erroneous knowledge between modalities while only three fundamental modalities, i.e., joints, bones, and motions are used, hence no additional modalities are explored. In this work, we first propose an Implicit Knowledge Exchange Module (IKEM) which alleviates the propagation of erroneous knowledge between low-performance modalities. Then, we further propose three new modalities to enrich the complementary information between modalities. Finally, to maintain efficiency when introducing new modalities, we propose a novel teacher-student framework to distill the knowledge from the secondary modalities into the mandatory modalities considering the relationship constrained by anchors, positives, and negatives, named relational cross-modality knowledge distillation. The experimental results demonstrate the effectiveness of our approach, unlocking the efficient use of skeleton-based multi-modality data. Source code will be made publicly available at https://github.com/desehuileng0o0/IKEM.
Tightly-Coupled LiDAR-Visual SLAM Based on Geometric Features for Mobile Agents
Cao, Ke, Liu, Ruiping, Wang, Ze, Peng, Kunyu, Zhang, Jiaming, Zheng, Junwei, Teng, Zhifeng, Yang, Kailun, Stiefelhagen, Rainer
The mobile robot relies on SLAM (Simultaneous Localization and Mapping) to provide autonomous navigation and task execution in complex and unknown environments. However, it is hard to develop a dedicated algorithm for mobile robots due to dynamic and challenging situations, such as poor lighting conditions and motion blur. To tackle this issue, we propose a tightly-coupled LiDAR-visual SLAM based on geometric features, which includes two sub-systems (LiDAR and monocular visual SLAM) and a fusion framework. The fusion framework associates the depth and semantics of the multi-modal geometric features to complement the visual line landmarks and to add direction optimization in Bundle Adjustment (BA). This further constrains visual odometry. On the other hand, the entire line segment detected by the visual subsystem overcomes the limitation of the LiDAR subsystem, which can only perform the local calculation for geometric features. It adjusts the direction of linear feature points and filters out outliers, leading to a higher accurate odometry system. Finally, we employ a module to detect the subsystem's operation, providing the LiDAR subsystem's output as a complementary trajectory to our system while visual subsystem tracking fails. The evaluation results on the public dataset M2DGR, gathered from ground robots across various indoor and outdoor scenarios, show that our system achieves more accurate and robust pose estimation compared to current state-of-the-art multi-modal methods.
Navigating Open Set Scenarios for Skeleton-based Action Recognition
Peng, Kunyu, Yin, Cheng, Zheng, Junwei, Liu, Ruiping, Schneider, David, Zhang, Jiaming, Yang, Kailun, Sarfraz, M. Saquib, Stiefelhagen, Rainer, Roitberg, Alina
In real-world scenarios, human actions often fall outside the distribution of training data, making it crucial for models to recognize known actions and reject unknown ones. However, using pure skeleton data in such open-set conditions poses challenges due to the lack of visual background cues and the distinct sparse structure of body pose sequences. In this paper, we tackle the unexplored Open-Set Skeleton-based Action Recognition (OS-SAR) task and formalize the benchmark on three skeleton-based datasets. We assess the performance of seven established open-set approaches on our task and identify their limits and critical generalization issues when dealing with skeleton information. To address these challenges, we propose a distance-based cross-modality ensemble method that leverages the cross-modal alignment of skeleton joints, bones, and velocities to achieve superior open-set recognition performance. We refer to the key idea as CrossMax - an approach that utilizes a novel cross-modality mean max discrepancy suppression mechanism to align latent spaces during training and a cross-modality distance-based logits refinement method during testing. CrossMax outperforms existing approaches and consistently yields state-of-the-art results across all datasets and backbones. The benchmark, code, and models will be released at https://github.com/KPeng9510/OS-SAR.
Unveiling the Hidden Realm: Self-supervised Skeleton-based Action Recognition in Occluded Environments
Chen, Yifei, Peng, Kunyu, Roitberg, Alina, Schneider, David, Zhang, Jiaming, Zheng, Junwei, Liu, Ruiping, Chen, Yufan, Yang, Kailun, Stiefelhagen, Rainer
To integrate action recognition methods into autonomous robotic systems, it is crucial to consider adverse situations involving target occlusions. Such a scenario, despite its practical relevance, is rarely addressed in existing self-supervised skeleton-based action recognition methods. To empower robots with the capacity to address occlusion, we propose a simple and effective method. We first pre-train using occluded skeleton sequences, then use k-means clustering (KMeans) on sequence embeddings to group semantically similar samples. Next, we employ K-nearest-neighbor (KNN) to fill in missing skeleton data based on the closest sample neighbors. Imputing incomplete skeleton sequences to create relatively complete sequences as input provides significant benefits to existing skeleton-based self-supervised models. Meanwhile, building on the state-of-the-art Partial Spatio-Temporal Learning (PSTL), we introduce an Occluded Partial Spatio-Temporal Learning (OPSTL) framework. This enhancement utilizes Adaptive Spatial Masking (ASM) for better use of high-quality, intact skeletons. The effectiveness of our imputation methods is verified on the challenging occluded versions of the NTURGB+D 60 and NTURGB+D 120. The source code will be made publicly available at https://github.com/cyfml/OPSTL.
MateRobot: Material Recognition in Wearable Robotics for People with Visual Impairments
Zheng, Junwei, Zhang, Jiaming, Yang, Kailun, Peng, Kunyu, Stiefelhagen, Rainer
People with Visual Impairments (PVI) typically recognize objects through haptic perception. Knowing objects and materials before touching is desired by the target users but under-explored in the field of human-centered robotics. To fill this gap, in this work, a wearable vision-based robotic system, MateRobot, is established for PVI to recognize materials and object categories beforehand. To address the computational constraints of mobile platforms, we propose a lightweight yet accurate model MateViT to perform pixel-wise semantic segmentation, simultaneously recognizing both objects and materials. Our methods achieve respective 40.2% and 51.1% of mIoU on COCOStuff-10K and DMS datasets, surpassing the previous method with +5.7% and +7.0% gains. Moreover, on the field test with participants, our wearable system reaches a score of 28 in the NASA-Task Load Index, indicating low cognitive demands and ease of use. Our MateRobot demonstrates the feasibility of recognizing material property through visual cues and offers a promising step towards improving the functionality of wearable robots for PVI. The source code has been made publicly available at https://junweizheng93.github.io/publications/MATERobot/MATERobot.html.
S$^3$-MonoDETR: Supervised Shape&Scale-perceptive Deformable Transformer for Monocular 3D Object Detection
He, Xuan, Yang, Kailun, Zheng, Junwei, Yuan, Jin, Bergasa, Luis M., Zhang, Hui, Li, Zhiyong
Recently, transformer-based methods have shown exceptional performance in monocular 3D object detection, which can predict 3D attributes from a single 2D image. These methods typically use visual and depth representations to generate query points on objects, whose quality plays a decisive role in the detection accuracy. However, current unsupervised attention mechanisms without any geometry appearance awareness in transformers are susceptible to producing noisy features for query points, which severely limits the network performance and also makes the model have a poor ability to detect multi-category objects in a single training process. To tackle this problem, this paper proposes a novel "Supervised Shape&Scale-perceptive Deformable Attention" (S$^3$-DA) module for monocular 3D object detection. Concretely, S$^3$-DA utilizes visual and depth features to generate diverse local features with various shapes and scales and predict the corresponding matching distribution simultaneously to impose valuable shape&scale perception for each query. Benefiting from this, S$^3$-DA effectively estimates receptive fields for query points belonging to any category, enabling them to generate robust query features. Besides, we propose a Multi-classification-based Shape$\&$Scale Matching (MSM) loss to supervise the above process. Extensive experiments on KITTI and Waymo Open datasets demonstrate that S$^3$-DA significantly improves the detection accuracy, yielding state-of-the-art performance of single-category and multi-category 3D object detection in a single training process compared to the existing approaches. The source code will be made publicly available at https://github.com/mikasa3lili/S3-MonoDETR.