Zheng, Hongwei
HiPART: Hierarchical Pose AutoRegressive Transformer for Occluded 3D Human Pose Estimation
Zheng, Hongwei, Li, Han, Dai, Wenrui, Zheng, Ziyang, Li, Chenglin, Zou, Junni, Xiong, Hongkai
Existing 2D-to-3D human pose estimation (HPE) methods struggle with the occlusion issue by enriching information like temporal and visual cues in the lifting stage. In this paper, we argue that these methods ignore the limitation of the sparse skeleton 2D input representation, which fundamentally restricts the 2D-to-3D lifting and worsens the occlusion issue. T o address these, we propose a novel two-stage generative densification method, named Hierarchical Pose AutoRegressive Transformer (HiP ART), to generate hierarchical 2D dense poses from the original sparse 2D pose. Specifically, we first develop a multi-scale skeleton tokenization module to quantize the highly dense 2D pose into hierarchical tokens and propose a Skeleton-aware Alignment to strengthen token connections. W e then develop a Hierarchical AutoRegressive Modeling scheme for hierarchical 2D pose generation. With generated hierarchical poses as inputs for 2D-to-3D lifting, the proposed method shows strong robustness in occluded scenarios and achieves state-of-the-art performance on the single-frame-based 3D HPE. Moreover, it outperforms numerous multi-frame methods while reducing parameter and computational complexity and can also complement them to further enhance performance and robustness.
FineFilter: A Fine-grained Noise Filtering Mechanism for Retrieval-Augmented Large Language Models
Zhang, Qianchi, Zhang, Hainan, Pang, Liang, Zheng, Hongwei, Tong, Yongxin, Zheng, Zhiming
Retrieved documents containing noise will hinder Retrieval-Augmented Generation (RAG) from detecting answer clues, necessitating noise filtering mechanisms to enhance accuracy. Existing methods use re-ranking or summarization to identify the most relevant sentences, but directly and accurately locating answer clues from these large-scale and complex documents remains challenging. Unlike these document-level operations, we treat noise filtering as a sentence-level MinMax optimization problem: first identifying the potential clues from multiple documents using contextual information, then ranking them by relevance, and finally retaining the least clues through truncation. In this paper, we propose FineFilter, a novel fine-grained noise filtering mechanism for RAG consisting of a clue extractor, a re-ranker, and a truncator. We optimize each module to tackle complex reasoning challenges: (1) Clue extractor firstly uses sentences containing the answer and similar ones as fine-tuned targets, aiming at extracting sufficient potential clues; (2) Re-ranker is trained to prioritize effective clues based on the real feedback from generation module, with clues capable of generating correct answer as positive samples and others as negative; (3) Truncator takes the minimum clues needed to answer the question (truncation point) as fine-tuned targets, and performs truncation on the re-ranked clues to achieve fine-grained noise filtering. Experiments on three QA datasets demonstrate that FineFilter significantly outperforms baselines in terms of performance and inference cost. Further analysis on each module shows the effectiveness of our optimizations for complex reasoning.
BEM: Balanced and Entropy-based Mix for Long-Tailed Semi-Supervised Learning
Zheng, Hongwei, Zhou, Linyuan, Li, Han, Su, Jinming, Wei, Xiaoming, Xu, Xiaoming
Data mixing methods play a crucial role in semi-supervised learning (SSL), but their application is unexplored in long-tailed semi-supervised learning (LTSSL). The primary reason is that the in-batch mixing manner fails to address class imbalance. Furthermore, existing LTSSL methods mainly focus on re-balancing data quantity but ignore class-wise uncertainty, which is also vital for class balance. For instance, some classes with sufficient samples might still exhibit high uncertainty due to indistinguishable features. To this end, this paper introduces the Balanced and Entropy-based Mix (BEM), a pioneering mixing approach to re-balance the class distribution of both data quantity and uncertainty. Specifically, we first propose a class balanced mix bank to store data of each class for mixing. This bank samples data based on the estimated quantity distribution, thus re-balancing data quantity. Then, we present an entropy-based learning approach to re-balance class-wise uncertainty, including entropy-based sampling strategy, entropy-based selection module, and entropy-based class balanced loss. Our BEM first leverages data mixing for improving LTSSL, and it can also serve as a complement to the existing re-balancing methods. Experimental results show that BEM significantly enhances various LTSSL frameworks and achieves state-of-the-art performances across multiple benchmarks.
Cross-Camera Feature Prediction for Intra-Camera Supervised Person Re-identification across Distant Scenes
Ge, Wenhang, Pan, Chunyan, Wu, Ancong, Zheng, Hongwei, Zheng, Wei-Shi
Person re-identification (Re-ID) aims to match person images across non-overlapping camera views. The majority of Re-ID methods focus on small-scale surveillance systems in which each pedestrian is captured in different camera views of adjacent scenes. However, in large-scale surveillance systems that cover larger areas, it is required to track a pedestrian of interest across distant scenes (e.g., a criminal suspect escapes from one city to another). Since most pedestrians appear in limited local areas, it is difficult to collect training data with cross-camera pairs of the same person. In this work, we study intra-camera supervised person re-identification across distant scenes (ICS-DS Re-ID), which uses cross-camera unpaired data with intra-camera identity labels for training. It is challenging as cross-camera paired data plays a crucial role for learning camera-invariant features in most existing Re-ID methods. To learn camera-invariant representation from cross-camera unpaired training data, we propose a cross-camera feature prediction method to mine cross-camera self supervision information from camera-specific feature distribution by transforming fake cross-camera positive feature pairs and minimize the distances of the fake pairs. Furthermore, we automatically localize and extract local-level feature by a transformer. Joint learning of global-level and local-level features forms a global-local cross-camera feature prediction scheme for mining fine-grained cross-camera self supervision information. Finally, cross-camera self supervision and intra-camera supervision are aggregated in a framework. The experiments are conducted in the ICS-DS setting on Market-SCT, Duke-SCT and MSMT17-SCT datasets. The evaluation results demonstrate the superiority of our method, which gains significant improvements of 15.4 Rank-1 and 22.3 mAP on Market-SCT as compared to the second best method.