Zhao, Yilin
Eagle 2: Building Post-Training Data Strategies from Scratch for Frontier Vision-Language Models
Li, Zhiqi, Chen, Guo, Liu, Shilong, Wang, Shihao, VS, Vibashan, Ji, Yishen, Lan, Shiyi, Zhang, Hao, Zhao, Yilin, Radhakrishnan, Subhashree, Chang, Nadine, Sapra, Karan, Deshmukh, Amala Sanjay, Rintamaki, Tuomas, Le, Matthieu, Karmanov, Ilia, Voegtle, Lukas, Fischer, Philipp, Huang, De-An, Roman, Timo, Lu, Tong, Alvarez, Jose M., Catanzaro, Bryan, Kautz, Jan, Tao, Andrew, Liu, Guilin, Yu, Zhiding
Recently, promising progress has been made by open-source vision-language models (VLMs) in bringing their capabilities closer to those of proprietary frontier models. However, most open-source models only publish their final model weights, leaving the critical details of data strategies and implementation largely opaque. In this work, we address VLM post-training from a data-centric perspective, showing the key role of data strategy in developing frontier VLMs. By studying and building our post-training data strategy from scratch, we share detailed insights into the development processes, aiming to benefit the development of competitive models for the open-source community. Our introduced data strategy, together with training recipes and model design, leads to a family of performant VLMs named Eagle2. Specifically, Eagle2-9B achieves state-of-the-art results across various multimodal benchmarks, matching certain competitive models with up to 70B parameters.
Innovative Thinking, Infinite Humor: Humor Research of Large Language Models through Structured Thought Leaps
Wang, Han, Zhao, Yilin, Li, Dian, Wang, Xiaohan, Liu, Gang, Lan, Xuguang, Wang, Hui
Humor is a culturally nuanced aspect of human language that presents challenges for understanding and generation, requiring participants to possess good creativity and strong associative thinking. Similar to reasoning tasks like solving math problems, humor generation requires continuous reflection and revision to foster creative thinking, rather than relying on a sudden flash of inspiration like Creative Leap-of-Thought (CLoT) paradigm. Although CLoT can realize the ability of remote association generation, this paradigm fails to generate humor content. Therefore, in this paper, we propose a systematic way of thinking about generating humor and based on it, we built Creative Leap of Structured Thought (CLoST) frame. First, a reward model is necessary achieve the purpose of being able to correct errors, since there is currently no expert model of humor and a usable rule to determine whether a piece of content is humorous. Judgement-oriented instructions are designed to improve the capability of a model, and we also propose an open-domain instruction evolutionary method to fully unleash the potential. Then, through reinforcement learning, the model learns to hone its rationales of the thought chain and refine the strategies it uses. Thus, it learns to recognize and correct its mistakes, and finally generate the most humorous and creative answer. These findings deepen our understanding of the creative capabilities of LLMs and provide ways to enhance LLMs' creative abilities for cross-domain innovative applications.
MetaTool: Facilitating Large Language Models to Master Tools with Meta-task Augmentation
Wang, Xiaohan, Li, Dian, Zhao, Yilin, Sinbadliu, null, Wang, Hui
Utilizing complex tools with Large Language Models (LLMs) is a critical component for grounding AI agents in various real-world scenarios. The core challenge of manipulating tools lies in understanding their usage and functionality. The prevailing approach involves few-shot prompting with demonstrations or fine-tuning on expert trajectories. However, for complex tools and tasks, mere in-context demonstrations may fail to cover sufficient knowledge. Training-based methods are also constrained by the high cost of dataset construction and limited generalizability. In this paper, we introduce a new tool learning methodology (MetaTool) that is generalizable for mastering any reusable toolset. Our approach includes a self-supervised data augmentation technique that enables LLMs to gain a comprehensive understanding of various tools, thereby improving their ability to complete tasks effectively. We develop a series of meta-tasks that involve predicting masked factors of tool execution. These self-supervised tasks enable the automatic generation of high-quality QA data concerning tool comprehension. By incorporating meta-task data into the instruction tuning process, the proposed MetaTool model achieves significant superiority to open-source models and is comparable to GPT-4/GPT-3.5 on multiple tool-oriented tasks.
ChatAnything: Facetime Chat with LLM-Enhanced Personas
Zhao, Yilin, Yuan, Xinbin, Gao, Shanghua, Lin, Zhijie, Hou, Qibin, Feng, Jiashi, Zhou, Daquan
In this technical report, we target generating anthropomorphized personas for LLM-based characters in an online manner, including visual appearance, personality and tones, with only text descriptions. To achieve this, we first leverage the in-context learning capability of LLMs for personality generation by carefully designing a set of system prompts. We then propose two novel concepts: the mixture of voices (MoV) and the mixture of diffusers (MoD) for diverse voice and appearance generation. For MoV, we utilize the text-to-speech (TTS) algorithms with a variety of pre-defined tones and select the most matching one based on the user-provided text description automatically. For MoD, we combine the recent popular text-to-image generation techniques and talking head algorithms to streamline the process of generating talking objects. We termed the whole framework as ChatAnything. With it, users could be able to animate anything with any personas that are anthropomorphic using just a few text inputs. However, we have observed that the anthropomorphic objects produced by current generative models are often undetectable by pre-trained face landmark detectors, leading to failure of the face motion generation, even if these faces possess human-like appearances because those images are nearly seen during the training (e.g., OOD samples). To address this issue, we incorporate pixel-level guidance to infuse human face landmarks during the image generation phase. To benchmark these metrics, we have built an evaluation dataset. Based on it, we verify that the detection rate of the face landmark is significantly increased from 57.0% to 92.5% thus allowing automatic face animation based on generated speech content. The code and more results can be found at https://chatanything.github.io/.
Multi-grained Evidence Inference for Multi-choice Reading Comprehension
Zhao, Yilin, Zhao, Hai, Duan, Sufeng
Multi-choice Machine Reading Comprehension (MRC) is a major and challenging task for machines to answer questions according to provided options. Answers in multi-choice MRC cannot be directly extracted in the given passages, and essentially require machines capable of reasoning from accurate extracted evidence. However, the critical evidence may be as simple as just one word or phrase, while it is hidden in the given redundant, noisy passage with multiple linguistic hierarchies from phrase, fragment, sentence until the entire passage. We thus propose a novel general-purpose model enhancement which integrates multi-grained evidence comprehensively, named Multi-grained evidence inferencer (Mugen), to make up for the inability. Mugen extracts three different granularities of evidence: coarse-, middle- and fine-grained evidence, and integrates evidence with the original passages, achieving significant and consistent performance improvement on four multi-choice MRC benchmarks.
Reference Knowledgeable Network for Machine Reading Comprehension
Zhao, Yilin, Zhang, Zhuosheng, Zhao, Hai
Multi-choice Machine Reading Comprehension (MRC) is a major and challenging form of MRC tasks that requires model to select the most appropriate answer from a set of candidates given passage and question. Most of the existing researches focus on the modeling of the task datasets without explicitly referring to external fine-grained commonsense sources, which is a well-known challenge in multi-choice tasks. Thus we propose a novel reference-based knowledge enhancement model based on span extraction called Reference Knowledgeable Network (RekNet), which simulates human reading strategy to refine critical information from the passage and quote external knowledge in necessity. In detail, RekNet refines fine-grained critical information and defines it as Reference Span, then quotes external knowledge quadruples by the co-occurrence information of Reference Span and answer options. Our proposed method is evaluated on two multi-choice MRC benchmarks: RACE and DREAM, which shows remarkable performance improvement with observable statistical significance level over strong baselines.