Goto

Collaborating Authors

 Zhao, Lirui


Lumina-Next: Making Lumina-T2X Stronger and Faster with Next-DiT

arXiv.org Artificial Intelligence

Lumina-T2X is a nascent family of Flow-based Large Diffusion Transformers that establishes a unified framework for transforming noise into various modalities, such as images and videos, conditioned on text instructions. Despite its promising capabilities, Lumina-T2X still encounters challenges including training instability, slow inference, and extrapolation artifacts. In this paper, we present Lumina-Next, an improved version of Lumina-T2X, showcasing stronger generation performance with increased training and inference efficiency. We begin with a comprehensive analysis of the Flag-DiT architecture and identify several suboptimal components, which we address by introducing the Next-DiT architecture with 3D RoPE and sandwich normalizations. To enable better resolution extrapolation, we thoroughly compare different context extrapolation methods applied to text-to-image generation with 3D RoPE, and propose Frequency- and Time-Aware Scaled RoPE tailored for diffusion transformers. Additionally, we introduced a sigmoid time discretization schedule to reduce sampling steps in solving the Flow ODE and the Context Drop method to merge redundant visual tokens for faster network evaluation, effectively boosting the overall sampling speed. Thanks to these improvements, Lumina-Next not only improves the quality and efficiency of basic text-to-image generation but also demonstrates superior resolution extrapolation capabilities and multilingual generation using decoder-based LLMs as the text encoder, all in a zero-shot manner. To further validate Lumina-Next as a versatile generative framework, we instantiate it on diverse tasks including visual recognition, multi-view, audio, music, and point cloud generation, showcasing strong performance across these domains. By releasing all codes and model weights, we aim to advance the development of next-generation generative AI capable of universal modeling.


DiffAgent: Fast and Accurate Text-to-Image API Selection with Large Language Model

arXiv.org Artificial Intelligence

Text-to-image (T2I) generative models have attracted significant attention and found extensive applications within and beyond academic research. For example, the Civitai community, a platform for T2I innovation, currently hosts an impressive array of 74,492 distinct models. However, this diversity presents a formidable challenge in selecting the most appropriate model and parameters, a process that typically requires numerous trials. Drawing inspiration from the tool usage research of large language models (LLMs), we introduce DiffAgent, an LLM agent designed to screen the accurate selection in seconds via API calls. DiffAgent leverages a novel two-stage training framework, SFTA, enabling it to accurately align T2I API responses with user input in accordance with human preferences. To train and evaluate DiffAgent's capabilities, we present DABench, a comprehensive dataset encompassing an extensive range of T2I APIs from the community. Our evaluations reveal that DiffAgent not only excels in identifying the appropriate T2I API but also underscores the effectiveness of the SFTA training framework. Codes are available at https://github.com/OpenGVLab/DiffAgent.


Boosting the Cross-Architecture Generalization of Dataset Distillation through an Empirical Study

arXiv.org Artificial Intelligence

The poor cross-architecture generalization of dataset distillation greatly weakens its practical significance. This paper attempts to mitigate this issue through an empirical study, which suggests that the synthetic datasets undergo an inductive bias towards the distillation model. Therefore, the evaluation model is strictly confined to having similar architectures of the distillation model. We propose a novel method of EvaLuation with distillation Feature (ELF), which utilizes features from intermediate layers of the distillation model for the cross-architecture evaluation. In this manner, the evaluation model learns from bias-free knowledge therefore its architecture becomes unfettered while retaining performance. By performing extensive experiments, we successfully prove that ELF can well enhance the cross-architecture generalization of current DD methods. Code of this project is at \url{https://github.com/Lirui-Zhao/ELF}.


OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have revolutionized natural language processing tasks. However, their practical deployment is hindered by their immense memory and computation requirements. Although recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM, they hand-craft quantization parameters, which leads to low performance and fails to deal with extremely low-bit quantization. To tackle this issue, we introduce an Omnidirectionally calibrated Quantization (OmniQuant) technique for LLMs, which achieves good performance in diverse quantization settings while maintaining the computational efficiency of PTQ by efficiently optimizing various quantization parameters. OmniQuant comprises two innovative components including Learnable Weight Clipping (LWC) and Learnable Equivalent Transformation (LET). Meanwhile, LET tackles activation outliers by shifting the challenge of quantization from activations to weights through a learnable equivalent transformation. For instance, the LLaMA-2 model family with the size of 7-70B can be processed with OmniQuant on a single A100-40G GPU within 1-16 hours using 128 samples. Additionally, OmniQuant demonstrates effectiveness in instruction-tuned models and delivers notable improvements in inference speed and memory reduction on real devices. Large language models (LLMs) such as GPT-4 (Bubeck et al., 2023) and LLaMA (Touvron et al., 2023a), have demonstrated impressive performance across various natural language benchmarks (Hendrycks et al., 2020; Bisk et al., 2020; Zellers et al., 2019). Furthermore, the language understanding capabilities inherent in LLMs can be successfully transferred into multimodal models (Mu et al., 2023; Xu et al., 2023; Zhang et al., 2023). Thereby, LLMs can be regarded as precursors to artificial general intelligence (Bubeck et al., 2023).


Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs

arXiv.org Artificial Intelligence

The ever-increasing large language models (LLMs), though opening a potential path for the upcoming artificial general intelligence, sadly drops a daunting obstacle on the way towards their on-device deployment. As one of the most well-established pre-LLMs approaches in reducing model complexity, network pruning appears to lag behind in the era of LLMs, due mostly to its costly fine-tuning (or re-training) necessity under the massive volumes of model parameter and training data. To close this industry-academia gap, we introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach that slightly updates sparse LLMs without the expensive backpropagation and any weight updates. Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs, in the fashion of performing iterative weight pruning-and-growing on top of sparse LLMs. To accomplish this purpose, DSnoT particularly takes into account the anticipated reduction in reconstruction error for pruning and growing, as well as the variance w.r.t. different input data for growing each weight. This practice can be executed efficiently in linear time since its obviates the need of backpropagation for fine-tuning LLMs. Extensive experiments on LLaMA-V1/V2, Vicuna, and OPT across various benchmarks demonstrate the effectiveness of DSnoT in enhancing the performance of sparse LLMs, especially at high sparsity levels. For instance, DSnoT is able to outperform the state-of-the-art Wanda by 26.79 perplexity at 70% sparsity with LLaMA-7B. Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs. Codes are available at https://github.com/zyxxmu/DSnoT.