Goto

Collaborating Authors

 Zhao, Hongbo


MRS: A Fast Sampler for Mean Reverting Diffusion based on ODE and SDE Solvers

arXiv.org Artificial Intelligence

In applications of diffusion models, controllable generation is of practical significance, but is also challenging. Current methods for controllable generation primarily focus on modifying the score function of diffusion models, while Mean Reverting (MR) Diffusion directly modifies the structure of the stochastic differential equation (SDE), making the incorporation of image conditions simpler and more natural. However, current training-free fast samplers are not directly applicable to MR Diffusion. And thus MR Diffusion requires hundreds of NFEs (number of function evaluations) to obtain high-quality samples. In this paper, we propose a new algorithm named MRS (MR Sampler) to reduce the sampling NFEs of MR Diffusion. We solve the reverse-time SDE and the probability flow ordinary differential equation (PF-ODE) associated with MR Diffusion, and derive semi-analytical solutions. The solutions consist of an analytical function and an integral parameterized by a neural network. Based on this solution, we can generate high-quality samples in fewer steps. Our approach does not require training and supports all mainstream parameterizations, including noise prediction, data prediction and velocity prediction. Extensive experiments demonstrate that MR Sampler maintains high sampling quality with a speedup of 10 to 20 times across ten different image restoration tasks. Our algorithm accelerates the sampling procedure of MR Diffusion, making it more practical in controllable generation.


Practical Continual Forgetting for Pre-trained Vision Models

arXiv.org Artificial Intelligence

For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners, and these requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify three key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. (iii) In real-world scenarios, the training samples may be scarce or partially missing during the process of forgetting. To address them, we first propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we introduce LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. To further extend GS-LoRA to more practical scenarios, we incorporate prototype information as additional supervision and introduce a more practical approach, GS-LoRA++. For each forgotten class, we move the logits away from its original prototype. For the remaining classes, we pull the logits closer to their respective prototypes. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that our method manages to forget specific classes with minimal impact on other classes. Codes have been released on https://github.com/bjzhb666/GS-LoRA.


Plane Constraints Aided Multi-Vehicle Cooperative Positioning Using Factor Graph Optimization

arXiv.org Artificial Intelligence

The development of vehicle-to-vehicle (V2V) communication facil-itates the study of cooperative positioning (CP) techniques for vehicular applications. The CP methods can improve the posi-tioning availability and accuracy by inter-vehicle ranging and data exchange between vehicles. However, the inter-vehicle rang-ing can be easily interrupted due to many factors such as obsta-cles in-between two cars. Without inter-vehicle ranging, the other cooperative data such as vehicle positions will be wasted, leading to performance degradation of range-based CP methods. To fully utilize the cooperative data and mitigate the impact of inter-vehicle ranging loss, a novel cooperative positioning method aided by plane constraints is proposed in this paper. The positioning results received from cooperative vehicles are used to construct the road plane for each vehicle. The plane parameters are then introduced into CP scheme to impose constraints on positioning solutions. The state-of-art factor graph optimization (FGO) algo-rithm is employed to integrate the plane constraints with raw data of Global Navigation Satellite Systems (GNSS) as well as inter-vehicle ranging measurements. The proposed CP method has the ability to resist the interruptions of inter-vehicle ranging since the plane constraints are computed by just using position-related data. A vehicle can still benefit from the position data of cooperative vehicles even if the inter-vehicle ranging is unavaila-ble. The experimental results indicate the superiority of the pro-posed CP method in positioning performance over the existing methods, especially when the inter-ranging interruptions occur.


Dive Deeper into Rectifying Homography for Stereo Camera Online Self-Calibration

arXiv.org Artificial Intelligence

Accurate estimation of stereo camera extrinsic parameters is the key to guarantee the performance of stereo matching algorithms. In prior arts, the online self-calibration of stereo cameras has commonly been formulated as a specialized visual odometry problem, without taking into account the principles of stereo rectification. In this paper, we first delve deeply into the concept of rectifying homography, which serves as the cornerstone for the development of our novel stereo camera online self-calibration algorithm, for cases where only a single pair of images is available. Furthermore, we introduce a simple yet effective solution for global optimum extrinsic parameter estimation in the presence of stereo video sequences. Additionally, we emphasize the impracticality of using three Euler angles and three components in the translation vectors for performance quantification. Instead, we introduce four new evaluation metrics to quantify the robustness and accuracy of extrinsic parameter estimation, applicable to both single-pair and multi-pair cases. Extensive experiments conducted across indoor and outdoor environments using various experimental setups validate the effectiveness of our proposed algorithm. The comprehensive evaluation results demonstrate its superior performance in comparison to the baseline algorithm. Our source code, demo video, and supplement are publicly available at mias.group/StereoCalibrator.


AdaL: Adaptive Gradient Transformation Contributes to Convergences and Generalizations

arXiv.org Artificial Intelligence

Adaptive optimization methods have been widely used in deep learning. They scale the learning rates adaptively according to the past gradient, which has been shown to be effective to accelerate the convergence. However, they suffer from poor generalization performance compared with SGD. Recent studies point that smoothing exponential gradient noise leads to generalization degeneration phenomenon. Inspired by this, we propose AdaL, with a transformation on the original gradient. AdaL accelerates the convergence by amplifying the gradient in the early stage, as well as dampens the oscillation and stabilizes the optimization by shrinking the gradient later. Such modification alleviates the smoothness of gradient noise, which produces better generalization performance. We have theoretically proved the convergence of AdaL and demonstrated its effectiveness on several benchmarks.