Goto

Collaborating Authors

 Zhang, Ziqi


Moss: Proxy Model-based Full-Weight Aggregation in Federated Learning with Heterogeneous Models

arXiv.org Artificial Intelligence

Modern Federated Learning (FL) has become increasingly essential for handling highly heterogeneous mobile devices. Current approaches adopt a partial model aggregation paradigm that leads to sub-optimal model accuracy and higher training overhead. In this paper, we challenge the prevailing notion of partial-model aggregation and propose a novel "full-weight aggregation" method named Moss, which aggregates all weights within heterogeneous models to preserve comprehensive knowledge. Evaluation across various applications demonstrates that Moss significantly accelerates training, reduces on-device training time and energy consumption, enhances accuracy, and minimizes network bandwidth utilization when compared to state-of-the-art baselines.


Learning to Calibrate for Reliable Visual Fire Detection

arXiv.org Artificial Intelligence

Fire is characterized by its sudden onset and destructive power, making early fire detection crucial for ensuring human safety and protecting property. With the advancement of deep learning, the application of computer vision in fire detection has significantly improved. However, deep learning models often exhibit a tendency toward overconfidence, and most existing works focus primarily on enhancing classification performance, with limited attention given to uncertainty modeling. To address this issue, we propose transforming the Expected Calibration Error (ECE), a metric for measuring uncertainty, into a differentiable ECE loss function. This loss is then combined with the cross-entropy loss to guide the training process of multi-class fire detection models. Additionally, to achieve a good balance between classification accuracy and reliable decision, we introduce a curriculum learning-based approach that dynamically adjusts the weight of the ECE loss during training. Extensive experiments are conducted on two widely used multi-class fire detection datasets, DFAN and EdgeFireSmoke, validating the effectiveness of our uncertainty modeling method.


Is FISHER All You Need in The Multi-AUV Underwater Target Tracking Task?

arXiv.org Artificial Intelligence

It is significant to employ multiple autonomous underwater vehicles (AUVs) to execute the underwater target tracking task collaboratively. However, it's pretty challenging to meet various prerequisites utilizing traditional control methods. Therefore, we propose an effective two-stage learning from demonstrations training framework, FISHER, to highlight the adaptability of reinforcement learning (RL) methods in the multi-AUV underwater target tracking task, while addressing its limitations such as extensive requirements for environmental interactions and the challenges in designing reward functions. The first stage utilizes imitation learning (IL) to realize policy improvement and generate offline datasets. To be specific, we introduce multi-agent discriminator-actor-critic based on improvements of the generative adversarial IL algorithm and multi-agent IL optimization objective derived from the Nash equilibrium condition. Then in the second stage, we develop multi-agent independent generalized decision transformer, which analyzes the latent representation to match the future states of high-quality samples rather than reward function, attaining further enhanced policies capable of handling various scenarios. Besides, we propose a simulation to simulation demonstration generation procedure to facilitate the generation of expert demonstrations in underwater environments, which capitalizes on traditional control methods and can easily accomplish the domain transfer to obtain demonstrations. Extensive simulation experiments from multiple scenarios showcase that FISHER possesses strong stability, multi-task performance and capability of generalization.


Enhancing Recommendation Systems with GNNs and Addressing Over-Smoothing

arXiv.org Artificial Intelligence

This paper addresses key challenges in enhancing recommendation systems by leveraging Graph Neural Networks (GNNs) and addressing inherent limitations such as over-smoothing, which reduces model effectiveness as network hierarchy deepens. The proposed approach introduces three GNN-based recommendation models, specifically designed to mitigate over-smoothing through innovative mechanisms like residual connections and identity mapping within the aggregation propagation process. These modifications enable more effective information flow across layers, preserving essential user-item interaction details to improve recommendation accuracy. Additionally, the study emphasizes the critical need for interpretability in recommendation systems, aiming to provide transparent and justifiable suggestions tailored to dynamic user preferences. By integrating collaborative filtering with GNN architectures, the proposed models not only enhance predictive accuracy but also align recommendations more closely with individual behaviors, adapting to nuanced shifts in user interests. This work advances the field by tackling both technical and user-centric challenges, contributing to the development of robust and explainable recommendation systems capable of managing the complexity and scale of modern online environments.


An Automated Data Mining Framework Using Autoencoders for Feature Extraction and Dimensionality Reduction

arXiv.org Artificial Intelligence

This study proposes an automated data mining framework based on autoencoders and experimentally verifies its effectiveness in feature extraction and data dimensionality reduction. Through the encoding-decoding structure, the autoencoder can capture the data's potential characteristics and achieve noise reduction and anomaly detection, providing an efficient and stable solution for the data mining process. The experiment compared the performance of the autoencoder with traditional dimensionality reduction methods (such as PCA, FA, T-SNE, and UMAP). The results showed that the autoencoder performed best in terms of reconstruction error and root mean square error and could better retain data structure and enhance the generalization ability of the model. The autoencoder-based framework not only reduces manual intervention but also significantly improves the automation of data processing. In the future, with the advancement of deep learning and big data technology, the autoencoder method combined with a generative adversarial network (GAN) or graph neural network (GNN) is expected to be more widely used in the fields of complex data processing, real-time data analysis and intelligent decision-making.


mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA

arXiv.org Artificial Intelligence

Advanced Multimodal Large Language Models (MLLMs) struggle with recent Knowledge-based VQA tasks, such as INFOSEEK and Encyclopedic-VQA, due to their limited and frozen knowledge scope, often leading to ambiguous and inaccurate responses. Thus, multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge, effectively expanding the knowledge scope. However, current mRAG methods have inherent drawbacks, including: 1) Performing retrieval even when external knowledge is not needed. 2) Lacking of identification of evidence that supports the query. 3) Increasing model complexity due to additional information filtering modules or rules. To address these shortcomings, we propose a novel generalized framework called \textbf{m}ultimodal \textbf{R}etrieval-\textbf{R}eflection-\textbf{A}ugmented \textbf{G}eneration (mR$^2$AG), which achieves adaptive retrieval and useful information localization to enable answers through two easy-to-implement reflection operations, preventing high model complexity. In mR$^2$AG, Retrieval-Reflection is designed to distinguish different user queries and avoids redundant retrieval calls, and Relevance-Reflection is introduced to guide the MLLM in locating beneficial evidence of the retrieved content and generating answers accordingly. In addition, mR$^2$AG can be integrated into any well-trained MLLM with efficient fine-tuning on the proposed mR$^2$AG Instruction-Tuning dataset (mR$^2$AG-IT). mR$^2$AG significantly outperforms state-of-the-art MLLMs (e.g., GPT-4v/o) and RAG-based MLLMs on INFOSEEK and Encyclopedic-VQA, while maintaining the exceptional capabilities of base MLLMs across a wide range of Visual-dependent tasks.


TEESlice: Protecting Sensitive Neural Network Models in Trusted Execution Environments When Attackers have Pre-Trained Models

arXiv.org Artificial Intelligence

Trusted Execution Environments (TEE) are used to safeguard on-device models. However, directly employing TEEs to secure the entire DNN model is challenging due to the limited computational speed. Utilizing GPU can accelerate DNN's computation speed but commercial widely-available GPUs usually lack security protection. To this end, scholars introduce TSDP, a method that protects privacy-sensitive weights within TEEs and offloads insensitive weights to GPUs. Nevertheless, current methods do not consider the presence of a knowledgeable adversary who can access abundant publicly available pre-trained models and datasets. This paper investigates the security of existing methods against such a knowledgeable adversary and reveals their inability to fulfill their security promises. Consequently, we introduce a novel partition before training strategy, which effectively separates privacy-sensitive weights from other components of the model. Our evaluation demonstrates that our approach can offer full model protection with a computational cost reduced by a factor of 10. In addition to traditional CNN models, we also demonstrate the scalability to large language models. Our approach can compress the private functionalities of the large language model to lightweight slices and achieve the same level of protection as the shielding-whole-model baseline.


Nash CoT: Multi-Path Inference with Preference Equilibrium

arXiv.org Artificial Intelligence

Chain-of-thought (CoT) prompting has emerged as a powerful technique for enhancing the reasoning capabilities of Large Language Models (LLMs) on complex problems. Among CoT-related studies, self-consistency (Multi-path inference with answer filtering through voting) involves generating multiple reasoning paths using the CoT framework and then selecting the most frequently produced outputs standing out as a concise yet competitive approach. While self-consistency has indeed led to the improvements in LLM inference, the use of multi-path inference also escalates deployment costs. Therefore, maintaining the performance benefits of self-consistency inherited from multi-path inference while reducing the inference costs holds significant value. In this research, we conceptualize language decoding as a preference consensus game, constructing a bi-player gaming system within each local path, and introduce Nash Chain-of-Thought (Nash CoT). Specifically, for a given question, we leverage LLM to autonomously select the contextually relevant template and generate outputs guided by this template, aiming to reach Nash Equilibrium alongside normal generation in each path. This approach allows us to achieve comparable or improved performance compared to self-consistency while using fewer inference paths on various inference tasks, including Arabic reasoning, Commonsense Question answering, and Symbolic inference.


Reinformer: Max-Return Sequence Modeling for Offline RL

arXiv.org Artificial Intelligence

As a data-driven paradigm, offline reinforcement learning (RL) has been formulated as sequence modeling that conditions on the hindsight information including returns, goal or future trajectory. Although promising, this supervised paradigm overlooks the core objective of RL that maximizes the return. This overlook directly leads to the lack of trajectory stitching capability that affects the sequence model learning from sub-optimal data. In this work, we introduce the concept of max-return sequence modeling which integrates the goal of maximizing returns into existing sequence models. We propose Reinforced Transformer (Reinformer), indicating the sequence model is reinforced by the RL objective. Reinformer additionally incorporates the objective of maximizing returns in the training phase, aiming to predict the maximum future return within the distribution. During inference, this in-distribution maximum return will guide the selection of optimal actions. Empirically, Reinformer is competitive with classical RL methods on the D4RL benchmark and outperforms state-of-the-art sequence model particularly in trajectory stitching ability. Code is public at https://github.com/Dragon-Zhuang/Reinformer.


ADR-BC: Adversarial Density Weighted Regression Behavior Cloning

arXiv.org Artificial Intelligence

Typically, traditional Imitation Learning (IL) methods first shape a reward or Q function and then use this shaped function within a reinforcement learning (RL) framework to optimize the empirical policy. However, if the shaped reward/Q function does not adequately represent the ground truth reward/Q function, updating the policy within a multi-step RL framework may result in cumulative bias, further impacting policy learning. Although utilizing behavior cloning (BC) to learn a policy by directly mimicking a few demonstrations in a single-step updating manner can avoid cumulative bias, BC tends to greedily imitate demonstrated actions, limiting its capacity to generalize to unseen state action pairs. To address these challenges, we propose ADR-BC, which aims to enhance behavior cloning through augmented density-based action support, optimizing the policy with this augmented support. Specifically, the objective of ADR-BC shares the similar physical meanings that matching expert distribution while diverging the sub-optimal distribution. Therefore, ADR-BC can achieve more robust expert distribution matching. Meanwhile, as a one-step behavior cloning framework, ADR-BC avoids the cumulative bias associated with multi-step RL frameworks. To validate the performance of ADR-BC, we conduct extensive experiments. Specifically, ADR-BC showcases a 10.5% improvement over the previous state-of-the-art (SOTA) generalized IL baseline, CEIL, across all tasks in the Gym-Mujoco domain. Additionally, it achieves an 89.5% improvement over Implicit Q Learning (IQL) using real rewards across all tasks in the Adroit and Kitchen domains. On the other hand, we conduct extensive ablations to further demonstrate the effectiveness of ADR-BC.