Zhang, Zhiyao
Field Deployment of Multi-Agent Reinforcement Learning Based Variable Speed Limit Controllers
Zhang, Yuhang, Zhang, Zhiyao, Quiñones-Grueiro, Marcos, Barbour, William, Weston, Clay, Biswas, Gautam, Work, Daniel
This article presents the first field deployment of a multi-agent reinforcement-learning (MARL) based variable speed limit (VSL) control system on the I-24 freeway near Nashville, Tennessee. We describe how we train MARL agents in a traffic simulator and directly deploy the simulation-based policy on a 17-mile stretch of Interstate 24 with 67 VSL controllers. We use invalid action masking and several safety guards to ensure the posted speed limits satisfy the real-world constraints from the traffic management center and the Tennessee Department of Transportation. Since the time of launch of the system through April, 2024, the system has made approximately 10,000,000 decisions on 8,000,000 trips. The analysis of the controller shows that the MARL policy takes control for up to 98% of the time without intervention from safety guards. The time-space diagrams of traffic speed and control commands illustrate how the algorithm behaves during rush hour. Finally, we quantify the domain mismatch between the simulation and real-world data and demonstrate the robustness of the MARL policy to this mismatch.
Adversarial Attacks on Cooperative Multi-agent Bandits
Zuo, Jinhang, Zhang, Zhiyao, Wang, Xuchuang, Chen, Cheng, Li, Shuai, Lui, John C. S., Hajiesmaili, Mohammad, Wierman, Adam
Cooperative multi-agent multi-armed bandits (CMA2B) consider the collaborative efforts of multiple agents in a shared multi-armed bandit game. We study latent vulnerabilities exposed by this collaboration and consider adversarial attacks on a few agents with the goal of influencing the decisions of the rest. More specifically, we study adversarial attacks on CMA2B in both homogeneous settings, where agents operate with the same arm set, and heterogeneous settings, where agents have distinct arm sets. In the homogeneous setting, we propose attack strategies that, by targeting just one agent, convince all agents to select a particular target arm $T-o(T)$ times while incurring $o(T)$ attack costs in $T$ rounds. In the heterogeneous setting, we prove that a target arm attack requires linear attack costs and propose attack strategies that can force a maximum number of agents to suffer linear regrets while incurring sublinear costs and only manipulating the observations of a few target agents. Numerical experiments validate the effectiveness of our proposed attack strategies.
MARVEL: Multi-Agent Reinforcement-Learning for Large-Scale Variable Speed Limits
Zhang, Yuhang, Quinones-Grueiro, Marcos, Zhang, Zhiyao, Wang, Yanbing, Barbour, William, Biswas, Gautam, Work, Daniel
Variable speed limit (VSL) control is a promising traffic management strategy for enhancing safety and mobility. This work introduces MARVEL, a multi-agent reinforcement learning (MARL) framework for implementing large-scale VSL control on freeway corridors using only commonly available data. The agents learn through a reward structure that incorporates adaptability to traffic conditions, safety, and mobility; enabling coordination among the agents. The proposed framework scales to cover corridors with many gantries thanks to a parameter sharing among all VSL agents. The agents are trained in a microsimulation environment based on a short freeway stretch with 8 gantries spanning 7 miles and tested with 34 gantries spanning 17 miles of I-24 near Nashville, TN. MARVEL improves traffic safety by 63.4% compared to the no control scenario and enhances traffic mobility by 14.6% compared to a state-of-the-practice algorithm that has been deployed on I-24. An explainability analysis is undertaken to explore the learned policy under different traffic conditions and the results provide insights into the decision-making process of agents. Finally, we test the policy learned from the simulation-based experiments on real input data from I-24 to illustrate the potential deployment capability of the learned policy.
Adversarial Attacks on Online Learning to Rank with Click Feedback
Zuo, Jinhang, Zhang, Zhiyao, Wang, Zhiyong, Li, Shuai, Hajiesmaili, Mohammad, Wierman, Adam
Online learning to rank (OLTR) is a sequential decision-making problem where a learning agent selects an ordered list of items and receives feedback through user clicks. Although potential attacks against OLTR algorithms may cause serious losses in real-world applications, little is known about adversarial attacks on OLTR. This paper studies attack strategies against multiple variants of OLTR. Our first result provides an attack strategy against the UCB algorithm on classical stochastic bandits with binary feedback, which solves the key issues caused by bounded and discrete feedback that previous works can not handle. Building on this result, we design attack algorithms against UCB-based OLTR algorithms in position-based and cascade models. Finally, we propose a general attack strategy against any algorithm under the general click model. Each attack algorithm manipulates the learning agent into choosing the target attack item $T-o(T)$ times, incurring a cumulative cost of $o(T)$. Experiments on synthetic and real data further validate the effectiveness of our proposed attack algorithms.