Goto

Collaborating Authors

 Zhang, Zhiyang


Performance Evaluation of Large Language Models in Statistical Programming

arXiv.org Artificial Intelligence

The programming capabilities of large language models (LLMs) have revolutionized automatic code generation and opened new avenues for automatic statistical analysis. However, the validity and quality of these generated codes need to be systematically evaluated before they can be widely adopted. Despite their growing prominence, a comprehensive evaluation of statistical code generated by LLMs remains scarce in the literature. In this paper, we assess the performance of LLMs, including two versions of ChatGPT and one version of Llama, in the domain of SAS programming for statistical analysis. Our study utilizes a set of statistical analysis tasks encompassing diverse statistical topics and datasets. Each task includes a problem description, dataset information, and human-verified SAS code. We conduct a comprehensive assessment of the quality of SAS code generated by LLMs through human expert evaluation based on correctness, effectiveness, readability, executability, and the accuracy of output results. The analysis of rating scores reveals that while LLMs demonstrate usefulness in generating syntactically correct code, they struggle with tasks requiring deep domain understanding and may produce redundant or incorrect results. This study offers valuable insights into the capabilities and limitations of LLMs in statistical programming, providing guidance for future advancements in AI-assisted coding systems for statistical analysis.


Enabling Autonomic Microservice Management through Self-Learning Agents

arXiv.org Artificial Intelligence

The increasing complexity of modern software systems necessitates robust autonomic self-management capabilities. While Large Language Models (LLMs) demonstrate potential in this domain, they often face challenges in adapting their general knowledge to specific service contexts. To address this limitation, we propose ServiceOdyssey, a self-learning agent system that autonomously manages microservices without requiring prior knowledge of service-specific configurations. By leveraging curriculum learning principles and iterative exploration, ServiceOdyssey progressively develops a deep understanding of operational environments, reducing dependence on human input or static documentation. A prototype built with the Sock Shop microservice demonstrates the potential of this approach for autonomic microservice management.


Navigating the Unknown: A Chat-Based Collaborative Interface for Personalized Exploratory Tasks

arXiv.org Artificial Intelligence

The rise of large language models (LLMs) has revolutionized user interactions with knowledge-based systems, enabling chatbots to synthesize vast amounts of information and assist with complex, exploratory tasks. However, LLM-based chatbots often struggle to provide personalized support, particularly when users start with vague queries or lack sufficient contextual information. This paper introduces the Collaborative Assistant for Personalized Exploration (CARE), a system designed to enhance personalization in exploratory tasks by combining a multi-agent LLM framework with a structured user interface. CARE's interface consists of a Chat Panel, Solution Panel, and Needs Panel, enabling iterative query refinement and dynamic solution generation. The multi-agent framework collaborates to identify both explicit and implicit user needs, delivering tailored, actionable solutions. In a within-subject user study with 22 participants, CARE was consistently preferred over a baseline LLM chatbot, with users praising its ability to reduce cognitive load, inspire creativity, and provide more tailored solutions. Our findings highlight CARE's potential to transform LLM-based systems from passive information retrievers to proactive partners in personalized problem-solving and exploration.


AI Delegates with a Dual Focus: Ensuring Privacy and Strategic Self-Disclosure

arXiv.org Artificial Intelligence

Large language model (LLM)-based AI delegates are increasingly utilized to act on behalf of users, assisting them with a wide range of tasks through conversational interfaces. Despite their advantages, concerns arise regarding the potential risk of privacy leaks, particularly in scenarios involving social interactions. While existing research has focused on protecting privacy by limiting the access of AI delegates to sensitive user information, many social scenarios require disclosing private details to achieve desired outcomes, necessitating a balance between privacy protection and disclosure. To address this challenge, we conduct a pilot study to investigate user preferences for AI delegates across various social relations and task scenarios, and then propose a novel AI delegate system that enables privacy-conscious self-disclosure. Our user study demonstrates that the proposed AI delegate strategically protects privacy, pioneering its use in diverse and dynamic social interactions.


Turn Every Application into an Agent: Towards Efficient Human-Agent-Computer Interaction with API-First LLM-Based Agents

arXiv.org Artificial Intelligence

Multimodal large language models (MLLMs) have enabled LLM-based agents to directly interact with application user interfaces (UIs), enhancing agents' performance in complex tasks. However, these agents often suffer from high latency and low reliability due to the extensive sequential UI interactions. To address this issue, we propose AXIS, a novel LLM-based agents framework prioritize actions through application programming interfaces (APIs) over UI actions. This framework also facilitates the creation and expansion of APIs through automated exploration of applications. Our experiments on Office Word demonstrate that AXIS reduces task completion time by 65%-70% and cognitive workload by 38%-53%, while maintaining accuracy of 97%-98% compare to humans. Our work contributes to a new human-agent-computer interaction (HACI) framework and a fresh UI design principle for application providers in the era of LLMs. It also explores the possibility of turning every applications into agents, paving the way towards an agent-centric operating system (Agent OS).