Goto

Collaborating Authors

 Zhang, Yukun


ToolFactory: Automating Tool Generation by Leveraging LLM to Understand REST API Documentations

arXiv.org Artificial Intelligence

LLM-based tool agents offer natural language interfaces, enabling users to seamlessly interact with computing services. While REST APIs are valuable resources for building such agents, they must first be transformed into AI-compatible tools. Automatically generating AI-compatible tools from REST API documents can greatly streamline tool agent development and minimize user learning curves. However, API documentation often suffers from a lack of standardization, inconsistent schemas, and incomplete information. To address these issues, we developed \textbf{ToolFactory}, an open-source pipeline for automating tool generation from unstructured API documents. To enhance the reliability of the developed tools, we implemented an evaluation method to diagnose errors. Furthermore, we built a knowledge base of verified tools, which we leveraged to infer missing information from poorly documented APIs. We developed the API Extraction Benchmark, comprising 167 API documents and 744 endpoints in various formats, and designed a JSON schema to annotate them. This annotated dataset was utilized to train and validate ToolFactory. The experimental results highlight the effectiveness of ToolFactory. We also demonstrated ToolFactory by creating a domain-specific AI agent for glycomaterials research. ToolFactory exhibits significant potential for facilitating the seamless integration of scientific REST APIs into AI workflows.


FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data

arXiv.org Artificial Intelligence

Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment. Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality. However, the sensitive nature of healthcare data often restricts individual clinical institutions from sharing data to train sufficiently generalized and unbiased ML models. Federated Learning (FL) is an emerging approach, which offers a promising solution by enabling collaborative model training across multiple participants without compromising the privacy of the individual data owners. However, to the best of our knowledge, there has been limited prior research applying FL to the cardiovascular disease domain. Moreover, existing FL benchmarks and datasets are typically simulated and may fall short of replicating the complexity of natural heterogeneity found in realistic datasets that challenges current FL algorithms. To address these gaps, this paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD. This benchmark comprises two major tasks: electrocardiogram (ECG) classification and echocardiogram (ECHO) segmentation, based on naturally scattered datasets constructed from the CVD data of seven institutions. Our extensive experiments on these datasets reveal that FL faces new challenges with real-world non-IID and long-tail data. The code and datasets of FedCVD are available https://github.com/SMILELab-FL/FedCVD.


Unveiling LLM Mechanisms Through Neural ODEs and Control Theory

arXiv.org Artificial Intelligence

This study presents a novel approach that leverages Neural Ordinary Differential Equations (Neural ODEs) to unravel the intricate relationships between inputs and outputs in Large Language Models (LLMs), and employs robust control to fine-tune outputs to meet predefined standards. Central to our methodology is the transformation of LLM inputs and outputs into a lower-dimensional latent space, facilitating a detailed examination of the information processing pathways within LLMs. Neural ODEs play a pivotal role in this investigation by providing a dynamic model that captures the continuous evolution of data within the LLMs. Additionally, robust control mechanisms are applied to strategically adjust the model's outputs, ensuring they not only maintain high quality and reliability but also adhere to specific performance criteria. This fusion of Neural ODEs and robust control represents a significant advancement in LLM interpretability, offering a comprehensive framework that elucidates the previously opaque mechanisms of these complex models. Our empirical results validate the effectiveness of this integrated approach, making a substantial contribution to the field of explainable AI by merging advanced machine learning techniques with the critical need for transparency and control in AI outputs.


Dynamic interactive group decision making method on two-dimensional language

arXiv.org Artificial Intelligence

The language evaluation information of the interactive group decision method at present is based on the one-dimension language variable. At the same time, multi-attribute group decision making method based on two-dimension linguistic information only use single-stage and static evaluation method. In this paper, we propose a dynamic group decision making method based on two-dimension linguistic information, combining dynamic interactive group decision making methods with two-dimensional language evaluation information The method first use Two-Dimensional Uncertain Linguistic Generalized Weighted Aggregation (DULGWA) Operators to aggregate the preference information of each decision maker, then adopting dynamic information entropy method to obtain weights of attributes at each stage. Finally we propose the group consistency index to quantify the termination conditions of group interaction. One example is given to verify the developed approach and to demonstrate its effectiveness