Goto

Collaborating Authors

 Zhang, Youhui


Brain-inspired global-local hybrid learning towards human-like intelligence

arXiv.org Artificial Intelligence

Two main routes of learning methods exist at present including neuroscience-inspired methods and machine learning methods. Both have own advantages, but neither currently can solve all learning problems well. Integrating them into one network may provide better learning abilities for general tasks. On the other hand, spiking neural network embodies "computation" in spatiotemporal domain with unique features of rich coding scheme and threshold switching, which is very suitable for low power and high parallel neuromorphic computing. Here, we report a spike-based general learning model that integrates two learning routes by introducing a brain-inspired meta-local module and a two-phase parametric modelling. The hybrid model can meta-learn general local plasticity, and receive top-down supervision information for multi-scale learning. We demonstrate that this hybrid model facilitates learning of many general tasks, including fault-tolerance learning, few-shot learning and multiple-task learning. Furthermore, the implementation of the hybrid model on the Tianjic neuromorphic platform proves that it can fully utilize the advantages of neuromorphic hardware architecture and promote energy-efficient on-chip applications.


TETRIS: TilE-matching the TRemendous Irregular Sparsity

Neural Information Processing Systems

Compressing neural networks by pruning weights with small magnitudes can significantly reduce the computation and storage cost. Although pruning makes the model smaller, it is difficult to get practical speedup in modern computing platforms such as CPU and GPU due to the irregularity. Structural pruning has attract a lot of research interest to make sparsity hardware-friendly. Increasing the sparsity granularity can lead to better hardware utilization, but it will compromise the sparsity for maintaining accuracy. In this work, we propose a novel method, TETRIS, to achieve both better hardware utilization and higher sparsity. Just like a tile-matching game, we cluster the irregularly distributed weights with small value into structured groups by reordering the input/output dimension and structurally prune them. Results show that it can achieve comparable sparsity with the irregular element-wise pruning and demonstrate negligible accuracy loss. The experiments also shows ideal speedup, which is proportional to the sparsity, on GPU platforms. Our proposed method provides a new solution toward algorithm and architecture co-optimization for accuracy-efficiency trade-off.


TETRIS: TilE-matching the TRemendous Irregular Sparsity

Neural Information Processing Systems

Compressing neural networks by pruning weights with small magnitudes can significantly reduce the computation and storage cost. Although pruning makes the model smaller, it is difficult to get practical speedup in modern computing platforms such as CPU and GPU due to the irregularity. Structural pruning has attract a lot of research interest to make sparsity hardware-friendly. Increasing the sparsity granularity can lead to better hardware utilization, but it will compromise the sparsity for maintaining accuracy. In this work, we propose a novel method, TETRIS, to achieve both better hardware utilization and higher sparsity. Just like a tile-matching game, we cluster the irregularly distributed weights with small value into structured groups by reordering the input/output dimension and structurally prune them. Results show that it can achieve comparable sparsity with the irregular element-wise pruning and demonstrate negligible accuracy loss. The experiments also shows ideal speedup, which is proportional to the sparsity, on GPU platforms. Our proposed method provides a new solution toward algorithm and architecture co-optimization for accuracy-efficiency trade-off.