Goto

Collaborating Authors

 Zhang, Yipeng


KA-GNN: Kolmogorov-Arnold Graph Neural Networks for Molecular Property Prediction

arXiv.org Artificial Intelligence

As key models in geometric deep learning, graph neural networks have demonstrated enormous power in molecular data analysis. Recently, a specially-designed learning scheme, known as Kolmogorov-Arnold Network (KAN), shows unique potential for the improvement of model accuracy, efficiency, and explainability. Here we propose the first non-trivial Kolmogorov-Arnold Network-based Graph Neural Networks (KA-GNNs), including KAN-based graph convolutional networks(KA-GCN) and KAN-based graph attention network (KA-GAT). The essential idea is to utilizes KAN's unique power to optimize GNN architectures at three major levels, including node embedding, message passing, and readout. Further, with the strong approximation capability of Fourier series, we develop Fourier series-based KAN model and provide a rigorous mathematical prove of the robust approximation capability of this Fourier KAN architecture. To validate our KA-GNNs, we consider seven most-widely-used benchmark datasets for molecular property prediction and extensively compare with existing state-of-the-art models. It has been found that our KA-GNNs can outperform traditional GNN models. More importantly, our Fourier KAN module can not only increase the model accuracy but also reduce the computational time. This work not only highlights the great power of KA-GNNs in molecular property prediction but also provides a novel geometric deep learning framework for the general non-Euclidean data analysis.


Molecular topological deep learning for polymer property prediction

arXiv.org Artificial Intelligence

Accurate and efficient prediction of polymer properties is of key importance for polymer design. Traditional experimental tools and density function theory (DFT)-based simulations for polymer property evaluation, are both expensive and time-consuming. Recently, a gigantic amount of graph-based molecular models have emerged and demonstrated huge potential in molecular data analysis. Even with the great progresses, these models tend to ignore the high-order and mutliscale information within the data. In this paper, we develop molecular topological deep learning (Mol-TDL) for polymer property analysis. Our Mol-TDL incorporates both high-order interactions and multiscale properties into topological deep learning architecture. The key idea is to represent polymer molecules as a series of simplicial complices at different scales and build up simplical neural networks accordingly. The aggregated information from different scales provides a more accurate prediction of polymer molecular properties.


Multi-Modal Generative AI: Multi-modal LLM, Diffusion and Beyond

arXiv.org Artificial Intelligence

Multi-modal generative AI has received increasing attention in both academia and industry. Particularly, two dominant families of techniques are: i) The multi-modal large language model (MLLM) such as GPT-4V, which shows impressive ability for multi-modal understanding; ii) The diffusion model such as Sora, which exhibits remarkable multi-modal powers, especially with respect to visual generation. As such, one natural question arises: Is it possible to have a unified model for both understanding and generation? To answer this question, in this paper, we first provide a detailed review of both MLLM and diffusion models, including their probabilistic modeling procedure, multi-modal architecture design, and advanced applications to image/video large language models as well as text-to-image/video generation. Then, we discuss the two important questions on the unified model: i) whether the unified model should adopt the auto-regressive or diffusion probabilistic modeling, and ii) whether the model should utilize a dense architecture or the Mixture of Experts(MoE) architectures to better support generation and understanding, two objectives. We further provide several possible strategies for building a unified model and analyze their potential advantages and disadvantages. We also summarize existing large-scale multi-modal datasets for better model pretraining in the future. To conclude the paper, we present several challenging future directions, which we believe can contribute to the ongoing advancement of multi-modal generative AI.


Causal Graph Discovery with Retrieval-Augmented Generation based Large Language Models

arXiv.org Artificial Intelligence

Causal graph recovery is traditionally done using statistical estimation-based methods or based on individual's knowledge about variables of interests. They often suffer from data collection biases and limitations of individuals' knowledge. The advance of large language models (LLMs) provides opportunities to address these problems. We propose a novel method that leverages LLMs to deduce causal relationships in general causal graph recovery tasks. This method leverages knowledge compressed in LLMs and knowledge LLMs extracted from scientific publication database as well as experiment data about factors of interest to achieve this goal. Our method gives a prompting strategy to extract associational relationships among those factors and a mechanism to perform causality verification for these associations. Comparing to other LLM-based methods that directly instruct LLMs to do the highly complex causal reasoning, our method shows clear advantage on causal graph quality on benchmark datasets. More importantly, as causality among some factors may change as new research results emerge, our method show sensitivity to new evidence in the literature and can provide useful information for updating causal graphs accordingly.


Self-Tuning: Instructing LLMs to Effectively Acquire New Knowledge through Self-Teaching

arXiv.org Artificial Intelligence

Large language models (LLMs) often struggle to provide up-to-date information due to their one-time training and the constantly evolving nature of the world. To keep LLMs current, existing approaches typically involve continued pre-training on new documents. However, they frequently face difficulties in extracting stored knowledge. Motivated by the remarkable success of the Feynman Technique in efficient human learning, we introduce Self-Tuning, a learning framework aimed at improving an LLM's ability to effectively acquire new knowledge from raw documents through self-teaching. Specifically, we develop a Self-Teaching strategy that augments the documents with a set of knowledge-intensive tasks created in a self-supervised manner, focusing on three crucial aspects: memorization, comprehension, and self-reflection. In addition, we introduce three Wiki-Newpages-2023-QA datasets to facilitate an in-depth analysis of an LLM's knowledge acquisition ability concerning memorization, extraction, and reasoning. Extensive experimental results on Llama2 family models reveal that Self-Tuning consistently exhibits superior performance across all knowledge acquisition tasks and excels in preserving previous knowledge.


Integrating Present and Past in Unsupervised Continual Learning

arXiv.org Artificial Intelligence

We formulate a unifying framework for unsupervised continual learning (UCL), which disentangles learning objectives that are specific to the present and the past data, encompassing stability, plasticity, and cross-task consolidation. The framework reveals that many existing UCL approaches overlook cross-task consolidation and try to balance plasticity and stability in a shared embedding space. This results in worse performance due to a lack of within-task data diversity and reduced effectiveness in learning the current task. Our method, Osiris, which explicitly optimizes all three objectives on separate embedding spaces, achieves state-of-the-art performance on all benchmarks, including two novel benchmarks proposed in this paper featuring semantically structured task sequences. Compared to standard benchmarks, these two structured benchmarks more closely resemble visual signals received by humans and animals when navigating real-world environments. Finally, we show some preliminary evidence that continual models can benefit from such realistic learning scenarios.


On the Security Vulnerabilities of Text-to-SQL Models

arXiv.org Artificial Intelligence

Abstract--Although it has been demonstrated that Natural Language Processing (NLP) algorithms are vulnerable to deliberate attacks, the question of whether such weaknesses can lead to software security threats is under-explored. To bridge this gap, we conducted vulnerability tests on Text-to-SQL systems that are commonly used to create natural language interfaces to databases. We showed that the Text-to-SQL modules within six commercial applications can be manipulated to produce malicious code, potentially leading to data breaches and Denial of Service attacks. This is the first demonstration that NLP (a) DoS attack: affecting the utility of one cloud server. In addition, experiments using four open-source language models verified that straightforward backdoor attacks on Text-to-SQL systems achieve a 100% success rate without affecting their performance. The aim of this work is to draw the community's attention to potential software security issues associated with NLP algorithms and encourage exploration of methods to mitigate against them.


Disentangling Transfer and Interference in Multi-Domain Learning

arXiv.org Artificial Intelligence

Convolutional Neural Networks (CNNs) have achieved great success in a variety of computer vision tasks, including image classification, object detection, and semantic segmentation [56]. Although inputs for a particular task can come from various domains, many studies develop models that only solve one task on a single domain. In contrast, humans and animals learn multiple tasks at the same time and utilize task similarities to make better task-level decisions. Inspired by this phenomenon, multi-task learning (MTL) seeks to jointly learn a single model for various tasks, typically on the same input domain [51]. Multi-domain learning (MDL) takes this a step further and requires models to learn from multiple tasks of various domains [4]. By jointly learning feature representations, MTL and MDL models can achieve superior per-task performance than models trained on a single task in isolation. This is a result of positive knowledge transfer [21]. Unfortunately, jointly training models on multiple tasks does not guarantee performance gains [54, 58].


CirCNN: Accelerating and Compressing Deep Neural Networks Using Block-CirculantWeight Matrices

arXiv.org Machine Learning

Large-scale deep neural networks (DNNs) are both compute and memory intensive. As the size of DNNs continues to grow, it is critical to improve the energy efficiency and performance while maintaining accuracy. For DNNs, the model size is an important factor affecting performance, scalability and energy efficiency. Weight pruning achieves good compression ratios but suffers from three drawbacks: 1) the irregular network structure after pruning; 2) the increased training complexity; and 3) the lack of rigorous guarantee of compression ratio and inference accuracy. To overcome these limitations, this paper proposes CirCNN, a principled approach to represent weights and process neural networks using block-circulant matrices. CirCNN utilizes the Fast Fourier Transform (FFT)-based fast multiplication, simultaneously reducing the computational complexity (both in inference and training) from O(n2) to O(nlogn) and the storage complexity from O(n2) to O(n), with negligible accuracy loss. Compared to other approaches, CirCNN is distinct due to its mathematical rigor: it can converge to the same effectiveness as DNNs without compression. The CirCNN architecture, a universal DNN inference engine that can be implemented on various hardware/software platforms with configurable network architecture. To demonstrate the performance and energy efficiency, we test CirCNN in FPGA, ASIC and embedded processors. Our results show that CirCNN architecture achieves very high energy efficiency and performance with a small hardware footprint. Based on the FPGA implementation and ASIC synthesis results, CirCNN achieves 6-102X energy efficiency improvements compared with the best state-of-the-art results.