Zhang, Yi
MemInsight: Autonomous Memory Augmentation for LLM Agents
Salama, Rana, Cai, Jason, Yuan, Michelle, Currey, Anna, Sunkara, Monica, Zhang, Yi, Benajiba, Yassine
Large language model (LLM) agents have evolved to intelligently process information, make decisions, and interact with users or tools. A key capability is the integration of long-term memory capabilities, enabling these agents to draw upon historical interactions and knowledge. However, the growing memory size and need for semantic structuring pose significant challenges. In this work, we propose an autonomous memory augmentation approach, MemInsight, to enhance semantic data representation and retrieval mechanisms. By leveraging autonomous augmentation to historical interactions, LLM agents are shown to deliver more accurate and contextualized responses. We empirically validate the efficacy of our proposed approach in three task scenarios; conversational recommendation, question answering and event summarization. On the LLM-REDIAL dataset, MemInsight boosts persuasiveness of recommendations by up to 14%. Moreover, it outperforms a RAG baseline by 34% in recall for LoCoMo retrieval. Our empirical results show the potential of MemInsight to enhance the contextual performance of LLM agents across multiple tasks.
EmbodiedVSR: Dynamic Scene Graph-Guided Chain-of-Thought Reasoning for Visual Spatial Tasks
Zhang, Yi, Zhang, Qiang, Ju, Xiaozhu, Liu, Zhaoyang, Mao, Jilei, Sun, Jingkai, Wu, Jintao, Gao, Shixiong, Cai, Shihan, Qin, Zhiyuan, Liang, Linkai, Wang, Jiaxu, Duan, Yiqun, Cao, Jiahang, Xu, Renjing, Tang, Jian
While multimodal large language models (MLLMs) have made groundbreaking progress in embodied intelligence, they still face significant challenges in spatial reasoning for complex long-horizon tasks. To address this gap, we propose EmbodiedVSR (Embodied Visual Spatial Reasoning), a novel framework that integrates dynamic scene graph-guided Chain-of-Thought (CoT) reasoning to enhance spatial understanding for embodied agents. By explicitly constructing structured knowledge representations through dynamic scene graphs, our method enables zero-shot spatial reasoning without task-specific fine-tuning. This approach not only disentangles intricate spatial relationships but also aligns reasoning steps with actionable environmental dynamics. To rigorously evaluate performance, we introduce the eSpatial-Benchmark, a comprehensive dataset including real-world embodied scenarios with fine-grained spatial annotations and adaptive task difficulty levels. Experiments demonstrate that our framework significantly outperforms existing MLLM-based methods in accuracy and reasoning coherence, particularly in long-horizon tasks requiring iterative environment interaction. The results reveal the untapped potential of MLLMs for embodied intelligence when equipped with structured, explainable reasoning mechanisms, paving the way for more reliable deployment in real-world spatial applications. The codes and datasets will be released soon.
GrInAdapt: Scaling Retinal Vessel Structural Map Segmentation Through Grounding, Integrating and Adapting Multi-device, Multi-site, and Multi-modal Fundus Domains
Liu, Zixuan, Honjaya, Aaron, Xu, Yuekai, Zhang, Yi, Pan, Hefu, Wang, Xin, Shapiro, Linda G, Wang, Sheng, Wang, Ruikang K
Retinal vessel segmentation is critical for diagnosing ocular conditions, yet current deep learning methods are limited by modalityspecific challenges and significant distribution shifts across imaging devices, resolutions, and anatomical regions. In this paper, we propose GrInAdapt, a novel framework for source-free multi-target domain adaptation that leverages multi-view images to refine segmentation labels and enhance model generalizability for optical coherence tomography angiography (OCTA) of the fundus of the eye. GrInAdapt follows an intuitive three-step approach: (i) grounding images to a common anchor space via registration, (ii) integrating predictions from multiple views to achieve improved label consensus, and (iii) adapting the source model to diverse target domains. Furthermore, GrInAdapt is flexible enough to incorporate auxiliary modalities--such as color fundus photography--to provide complementary cues for robust vessel segmentation. Extensive experiments on a multi-device, multi-site, and multi-modal retinal dataset demonstrate that GrInAdapt significantly outperforms existing domain adaptation methods, achieving higher segmentation accuracy and robustness across multiple domains. These results highlight the potential of GrInAdapt to advance automated retinal vessel analysis and support robust clinical decision-making.
FedPalm: A General Federated Learning Framework for Closed- and Open-Set Palmprint Verification
Yang, Ziyuan, Chen, Yingyu, Gao, Chengrui, Teoh, Andrew Beng Jin, Zhang, Bob, Zhang, Yi
Current deep learning (DL)-based palmprint verification models rely on centralized training with large datasets, which raises significant privacy concerns due to biometric data's sensitive and immutable nature. Federated learning~(FL), a privacy-preserving distributed learning paradigm, offers a compelling alternative by enabling collaborative model training without the need for data sharing. However, FL-based palmprint verification faces critical challenges, including data heterogeneity from diverse identities and the absence of standardized evaluation benchmarks. This paper addresses these gaps by establishing a comprehensive benchmark for FL-based palmprint verification, which explicitly defines and evaluates two practical scenarios: closed-set and open-set verification. We propose FedPalm, a unified FL framework that balances local adaptability with global generalization. Each client trains a personalized textural expert tailored to local data and collaboratively contributes to a shared global textural expert for extracting generalized features. To further enhance verification performance, we introduce a Textural Expert Interaction Module that dynamically routes textural features among experts to generate refined side textural features. Learnable parameters are employed to model relationships between original and side features, fostering cross-texture-expert interaction and improving feature discrimination. Extensive experiments validate the effectiveness of FedPalm, demonstrating robust performance across both scenarios and providing a promising foundation for advancing FL-based palmprint verification research.
On Synthetic Data Strategies for Domain-Specific Generative Retrieval
Wen, Haoyang, Guo, Jiang, Zhang, Yi, Jiang, Jiarong, Wang, Zhiguo
This paper investigates synthetic data generation strategies in developing generative retrieval models for domain-specific corpora, thereby addressing the scalability challenges inherent in manually annotating in-domain queries. We study the data strategies for a two-stage training framework: in the first stage, which focuses on learning to decode document identifiers from queries, we investigate LLM-generated queries across multiple granularity (e.g. chunks, sentences) and domain-relevant search constraints that can better capture nuanced relevancy signals. In the second stage, which aims to refine document ranking through preference learning, we explore the strategies for mining hard negatives based on the initial model's predictions. Experiments on public datasets over diverse domains demonstrate the effectiveness of our synthetic data generation and hard negative sampling approach.
Worse than Zero-shot? A Fact-Checking Dataset for Evaluating the Robustness of RAG Against Misleading Retrievals
Zeng, Linda, Gupta, Rithwik, Motwani, Divij, Yang, Diji, Zhang, Yi
Retrieval-augmented generation (RAG) has shown impressive capabilities in mitigating hallucinations in large language models (LLMs). However, LLMs struggle to handle misleading retrievals and often fail to maintain their own reasoning when exposed to conflicting or selectively-framed evidence, making them vulnerable to real-world misinformation. In such real-world retrieval scenarios, misleading and conflicting information is rampant, particularly in the political domain, where evidence is often selectively framed, incomplete, or polarized. However, existing RAG benchmarks largely assume a clean retrieval setting, where models succeed by accurately retrieving and generating answers from gold-standard documents. This assumption fails to align with real-world conditions, leading to an overestimation of RAG system performance. To bridge this gap, we introduce RAGuard, a fact-checking dataset designed to evaluate the robustness of RAG systems against misleading retrievals. Unlike prior benchmarks that rely on synthetic noise, our dataset constructs its retrieval corpus from Reddit discussions, capturing naturally occurring misinformation. It categorizes retrieved evidence into three types: supporting, misleading, and irrelevant, providing a realistic and challenging testbed for assessing how well RAG systems navigate different retrieval information. Our benchmark experiments reveal that when exposed to misleading retrievals, all tested LLM-powered RAG systems perform worse than their zero-shot baselines (i.e., no retrieval at all), highlighting their susceptibility to noisy environments. To the best of our knowledge, RAGuard is the first benchmark to systematically assess RAG robustness against misleading evidence. We expect this benchmark will drive future research toward improving RAG systems beyond idealized datasets, making them more reliable for real-world applications.
Constructing a Norm for Children's Scientific Drawing: Distribution Features Based on Semantic Similarity of Large Language Models
Zhang, Yi, Wei, Fan, Li, Jingyi, Wang, Yan, Yu, Yanyan, Chen, Jianli, Cai, Zipo, Liu, Xinyu, Wang, Wei, Wang, Peng, Wang, Zhong
The use of children's drawings to examining their conceptual understanding has been proven to be an effective method, but there are two major problems with previous research: 1. The content of the drawings heavily relies on the task, and the ecological validity of the conclusions is low; 2. The interpretation of drawings relies too much on the subjective feelings of the researchers. To address this issue, this study uses the Large Language Model (LLM) to identify 1420 children's scientific drawings (covering 9 scientific themes/concepts), and uses the word2vec algorithm to calculate their semantic similarity. The study explores whether there are consistent drawing representations for children on the same theme, and attempts to establish a norm for children's scientific drawings, providing a baseline reference for follow-up children's drawing research. The results show that the representation of most drawings has consistency, manifested as most semantic similarity greater than 0.8. At the same time, it was found that the consistency of the representation is independent of the accuracy (of LLM's recognition), indicating the existence of consistency bias. In the subsequent exploration of influencing factors, we used Kendall rank correlation coefficient to investigate the effects of Sample Size, Abstract Degree, and Focus Points on drawings, and used word frequency statistics to explore whether children represented abstract themes/concepts by reproducing what was taught in class.
M-ABSA: A Multilingual Dataset for Aspect-Based Sentiment Analysis
Wu, Chengyan, Ma, Bolei, Liu, Yihong, Zhang, Zheyu, Deng, Ningyuan, Li, Yanshu, Chen, Baolan, Zhang, Yi, Plank, Barbara, Xue, Yun
Aspect-based sentiment analysis (ABSA) is a crucial task in information extraction and sentiment analysis, aiming to identify aspects with associated sentiment elements in text. However, existing ABSA datasets are predominantly English-centric, limiting the scope for multilingual evaluation and research. To bridge this gap, we present M-ABSA, a comprehensive dataset spanning 7 domains and 21 languages, making it the most extensive multilingual parallel dataset for ABSA to date. Our primary focus is on triplet extraction, which involves identifying aspect terms, aspect categories, and sentiment polarities. The dataset is constructed through an automatic translation process with human review to ensure quality. We perform extensive experiments using various baselines to assess performance and compatibility on M-ABSA. Our empirical findings highlight that the dataset enables diverse evaluation tasks, such as multilingual and multi-domain transfer learning, and large language model evaluation, underscoring its inclusivity and its potential to drive advancements in multilingual ABSA research.
A Study on Leveraging Search and Self-Feedback for Agent Reasoning
K, Karthikeyan, Yuan, Michelle, Mansimov, Elman, Margatina, Katerina, Pratik, Anurag, Bonadiman, Daniele, Sunkara, Monica, Zhang, Yi, Benajiba, Yassine
Recent works have demonstrated that incorporating search during inference can significantly improve reasoning capabilities of language agents. Some approaches may make use of the ground truth or rely on model's own generated feedback. The search algorithm uses this feedback to then produce values that will update its criterion for exploring and exploiting various reasoning paths. In this study, we investigate how search and model's self-feedback can be leveraged for reasoning tasks. First, we explore differences in ground-truth feedback and self-feedback during search for math reasoning. Second, we observe limitations in applying search techniques to more complex tasks like tool-calling and design domain-specific approaches to address these gaps. Our experiments reveal challenges related to generalization when solely relying on self-feedback during search. For search to work effectively, either access to the ground-truth is needed or feedback mechanisms need to be carefully designed for the specific task.
Dark Distillation: Backdooring Distilled Datasets without Accessing Raw Data
Yang, Ziyuan, Yan, Ming, Zhang, Yi, Zhou, Joey Tianyi
Dataset distillation (DD) enhances training efficiency and reduces bandwidth by condensing large datasets into smaller synthetic ones. It enables models to achieve performance comparable to those trained on the raw full dataset and has become a widely adopted method for data sharing. However, security concerns in DD remain underexplored. Existing studies typically assume that malicious behavior originates from dataset owners during the initial distillation process, where backdoors are injected into raw datasets. In contrast, this work is the first to address a more realistic and concerning threat: attackers may intercept the dataset distribution process, inject backdoors into the distilled datasets, and redistribute them to users. While distilled datasets were previously considered resistant to backdoor attacks, we demonstrate that they remain vulnerable to such attacks. Furthermore, we show that attackers do not even require access to any raw data to inject the backdoors successfully. Specifically, our approach reconstructs conceptual archetypes for each class from the model trained on the distilled dataset. Backdoors are then injected into these archetypes to update the distilled dataset. Moreover, we ensure the updated dataset not only retains the backdoor but also preserves the original optimization trajectory, thus maintaining the knowledge of the raw dataset. To achieve this, a hybrid loss is designed to integrate backdoor information along the benign optimization trajectory, ensuring that previously learned information is not forgotten. Extensive experiments demonstrate that distilled datasets are highly vulnerable to backdoor attacks, with risks pervasive across various raw datasets, distillation methods, and downstream training strategies. Moreover, our attack method is efficient, capable of synthesizing a malicious distilled dataset in under one minute in certain cases.