Zhang, Yan
Ladder: A Model-Agnostic Framework Boosting LLM-based Machine Translation to the Next Level
Feng, Zhaopeng, Chen, Ruizhe, Zhang, Yan, Meng, Zijie, Liu, Zuozhu
General-purpose Large Language Models (LLMs) like GPT-4 have achieved remarkable advancements in machine translation (MT) by leveraging extensive web content. On the other hand, translation-specific LLMs are built by pre-training on domain-specific monolingual corpora and fine-tuning with human-annotated translation data. Despite the superior performance, these methods either demand an unprecedented scale of computing and data or substantial human editing and annotation efforts. In this paper, we develop Ladder, a novel model-agnostic and cost-effective tool to refine the performance of general LLMs for MT. Ladder is trained on pseudo-refinement triplets which can be easily obtained from existing LLMs without additional human cost. During training, we propose a hierarchical fine-tuning strategy with an easy-to-hard schema, improving Ladder's refining performance progressively. The trained Ladder can be seamlessly integrated with any general-purpose LLMs to boost their translation performance. By utilizing Gemma-2B/7B as the backbone, Ladder-2B can elevate raw translations to the level of top-tier open-source models (e.g., refining BigTranslate-13B with +6.91 BLEU and +3.52 COMET for XX-En), and Ladder-7B can further enhance model performance to be on par with the state-of-the-art GPT-4. Extensive ablation and analysis corroborate the effectiveness of Ladder in diverse settings. Our code is available at https://github.com/fzp0424/Ladder
TEaR: Improving LLM-based Machine Translation with Systematic Self-Refinement
Feng, Zhaopeng, Zhang, Yan, Li, Hao, Wu, Bei, Liao, Jiayu, Liu, Wenqiang, Lang, Jun, Feng, Yang, Wu, Jian, Liu, Zuozhu
Large Language Models (LLMs) have achieved impressive results in Machine Translation (MT). However, careful evaluations by human reveal that the translations produced by LLMs still contain multiple errors. Importantly, feeding back such error information into the LLMs can lead to self-refinement and result in improved translation performance. Motivated by these insights, we introduce a systematic LLM-based self-refinement translation framework, named \textbf{TEaR}, which stands for \textbf{T}ranslate, \textbf{E}stimate, \textbf{a}nd \textbf{R}efine, marking a significant step forward in this direction. Our findings demonstrate that 1) our self-refinement framework successfully assists LLMs in improving their translation quality across a wide range of languages, whether it's from high-resource languages to low-resource ones or whether it's English-centric or centered around other languages; 2) TEaR exhibits superior systematicity and interpretability; 3) different estimation strategies yield varied impacts, directly affecting the effectiveness of the final corrections. Additionally, traditional neural translation models and evaluation models operate separately, often focusing on singular tasks due to their limited capabilities, while general-purpose LLMs possess the capability to undertake both tasks simultaneously. We further conduct cross-model correction experiments to investigate the potential relationship between the translation and evaluation capabilities of general-purpose LLMs. Our code and data are available at https://github.com/fzp0424/self_correct_mt
Degrees of Freedom Matter: Inferring Dynamics from Point Trajectories
Zhang, Yan, Prokudin, Sergey, Mihajlovic, Marko, Ma, Qianli, Tang, Siyu
Understanding the dynamics of generic 3D scenes is fundamentally challenging in computer vision, essential in enhancing applications related to scene reconstruction, motion tracking, and avatar creation. In this work, we address the task as the problem of inferring dense, long-range motion of 3D points. By observing a set of point trajectories, we aim to learn an implicit motion field parameterized by a neural network to predict the movement of novel points within the same domain, without relying on any data-driven or scene-specific priors. To achieve this, our approach builds upon the recently introduced dynamic point field model that learns smooth deformation fields between the canonical frame and individual observation frames. However, temporal consistency between consecutive frames is neglected, and the number of required parameters increases linearly with the sequence length due to per-frame modeling. To address these shortcomings, we exploit the intrinsic regularization provided by SIREN, and modify the input layer to produce a spatiotemporally smooth motion field. Additionally, we analyze the motion field Jacobian matrix, and discover that the motion degrees of freedom (DOFs) in an infinitesimal area around a point and the network hidden variables have different behaviors to affect the model's representational power. This enables us to improve the model representation capability while retaining the model compactness. Furthermore, to reduce the risk of overfitting, we introduce a regularization term based on the assumption of piece-wise motion smoothness. Our experiments assess the model's performance in predicting unseen point trajectories and its application in temporal mesh alignment with guidance. The results demonstrate its superiority and effectiveness. The code and data for the project are publicly available: \url{https://yz-cnsdqz.github.io/eigenmotion/DOMA/}
MixLoRA: Enhancing Large Language Models Fine-Tuning with LoRA-based Mixture of Experts
Li, Dengchun, Ma, Yingzi, Wang, Naizheng, Ye, Zhengmao, Cheng, Zhiyuan, Tang, Yinghao, Zhang, Yan, Duan, Lei, Zuo, Jie, Yang, Cal, Tang, Mingjie
Fine-tuning Large Language Models (LLMs) is a common practice to adapt pre-trained models for specific applications. While methods like LoRA have effectively addressed GPU memory constraints during fine-tuning, their performance often falls short, especially in multi-task scenarios. In contrast, Mixture-of-Expert (MoE) models, such as Mixtral 8x7B, demonstrate remarkable performance in multi-task learning scenarios while maintaining a reduced parameter count. However, the resource requirements of these MoEs remain challenging, particularly for consumer-grade GPUs with less than 24GB memory. To tackle these challenges, we propose MixLoRA, an approach to construct a resource-efficient sparse MoE model based on LoRA. MixLoRA inserts multiple LoRA-based experts within the feed-forward network block of a frozen pre-trained dense model and employs a commonly used top-k router. Unlike other LoRA-based MoE methods, MixLoRA enhances model performance by utilizing independent attention-layer LoRA adapters. Additionally, an auxiliary load balance loss is employed to address the imbalance problem of the router. Our evaluations show that MixLoRA improves about 9% accuracy compared to state-of-the-art PEFT methods in multi-task learning scenarios. We also propose a new high-throughput framework to alleviate the computation and memory bottlenecks during the training and inference of MOE models. This framework reduces GPU memory consumption by 40% and token computation latency by 30% during both training and inference.
Raformer: Redundancy-Aware Transformer for Video Wire Inpainting
Ji, Zhong, Su, Yimu, Zhang, Yan, Hou, Jiacheng, Pang, Yanwei, Han, Jungong
Video Wire Inpainting (VWI) is a prominent application in video inpainting, aimed at flawlessly removing wires in films or TV series, offering significant time and labor savings compared to manual frame-by-frame removal. However, wire removal poses greater challenges due to the wires being longer and slimmer than objects typically targeted in general video inpainting tasks, and often intersecting with people and background objects irregularly, which adds complexity to the inpainting process. Recognizing the limitations posed by existing video wire datasets, which are characterized by their small size, poor quality, and limited variety of scenes, we introduce a new VWI dataset with a novel mask generation strategy, namely Wire Removal Video Dataset 2 (WRV2) and Pseudo Wire-Shaped (PWS) Masks. WRV2 dataset comprises over 4,000 videos with an average length of 80 frames, designed to facilitate the development and efficacy of inpainting models. Building upon this, our research proposes the Redundancy-Aware Transformer (Raformer) method that addresses the unique challenges of wire removal in video inpainting. Unlike conventional approaches that indiscriminately process all frame patches, Raformer employs a novel strategy to selectively bypass redundant parts, such as static background segments devoid of valuable information for inpainting. At the core of Raformer is the Redundancy-Aware Attention (RAA) module, which isolates and accentuates essential content through a coarse-grained, window-based attention mechanism. This is complemented by a Soft Feature Alignment (SFA) module, which refines these features and achieves end-to-end feature alignment. Extensive experiments on both the traditional video inpainting datasets and our proposed WRV2 dataset demonstrate that Raformer outperforms other state-of-the-art methods.
Cantor: Inspiring Multimodal Chain-of-Thought of MLLM
Gao, Timin, Chen, Peixian, Zhang, Mengdan, Fu, Chaoyou, Shen, Yunhang, Zhang, Yan, Zhang, Shengchuan, Zheng, Xiawu, Sun, Xing, Cao, Liujuan, Ji, Rongrong
With the advent of large language models(LLMs) enhanced by the chain-of-thought(CoT) methodology, visual reasoning problem is usually decomposed into manageable sub-tasks and tackled sequentially with various external tools. However, such a paradigm faces the challenge of the potential "determining hallucinations" in decision-making due to insufficient visual information and the limitation of low-level perception tools that fail to provide abstract summaries necessary for comprehensive reasoning. We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks. This paper delves into the realm of multimodal CoT to solve intricate visual reasoning tasks with multimodal large language models(MLLMs) and their cognitive capability. To this end, we propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture. Cantor first acts as a decision generator and integrates visual inputs to analyze the image and problem, ensuring a closer alignment with the actual context. Furthermore, Cantor leverages the advanced cognitive functions of MLLMs to perform as multifaceted experts for deriving higher-level information, enhancing the CoT generation process. Our extensive experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance across two complex visual reasoning datasets, without necessitating fine-tuning or ground-truth rationales. Project Page: https://ggg0919.github.io/cantor/ .
Joint Visual and Text Prompting for Improved Object-Centric Perception with Multimodal Large Language Models
Jiang, Songtao, Zhang, Yan, Zhou, Chenyi, Jin, Yeying, Feng, Yang, Wu, Jian, Liu, Zuozhu
Multimodal Large Language Models (MLLMs) such as GPT-4V and Gemini Pro face challenges in achieving human-level perception in Visual Question Answering (VQA), particularly in object-oriented perception tasks which demand fine-grained understanding of object identities, locations or attributes, as indicated by empirical findings. This is mainly due to their limited capability to effectively integrate complex visual cues with textual information and potential object hallucinations. In this paper, we present a novel approach, Joint Visual and Text Prompting (VTPrompt), that employs fine-grained visual information to enhance the capability of MLLMs in VQA, especially for object-oriented perception. VTPrompt merges visual and text prompts to extract key concepts from textual questions and employs a detection model to highlight relevant objects as visual prompts in images. The processed images alongside text prompts are subsequently fed into MLLMs to produce more accurate answers. Our experiments with GPT-4V and Gemini Pro, on three benchmarks, i.e., MME , MMB and POPE, demonstrate significant improvements. Particularly, our method led to a score improvement of up to 183.5 for GPT-4V on MME and enhanced MMB performance by 8.17\% for GPT-4V and 15.69\% for Gemini Pro.
Quantifying and Mitigating Unimodal Biases in Multimodal Large Language Models: A Causal Perspective
Chen, Meiqi, Cao, Yixin, Zhang, Yan, Lu, Chaochao
Recent advancements in Large Language Models (LLMs) have facilitated the development of Multimodal LLMs (MLLMs). Despite their impressive capabilities, MLLMs often suffer from an over-reliance on unimodal biases (e.g., language bias and vision bias), leading to incorrect answers in complex multimodal tasks. To investigate this issue, we propose a causal framework to interpret the biases in Visual Question Answering (VQA) problems. Within our framework, we devise a causal graph to elucidate the predictions of MLLMs on VQA problems, and assess the causal effect of biases through an in-depth causal analysis. Motivated by the causal graph, we introduce a novel MORE dataset, consisting of 12,000 VQA instances. This dataset is designed to challenge MLLMs' abilities, necessitating multi-hop reasoning and the surmounting of unimodal biases. Furthermore, we propose two strategies to mitigate unimodal biases and enhance MLLMs' reasoning capabilities, including a Decompose-Verify-Answer (DeVA) framework for limited-access MLLMs and the refinement of open-source MLLMs through fine-tuning. Extensive quantitative and qualitative experiments offer valuable insights for future research. Our project page is at https://opencausalab.github.io/MORE.
Graph Neural Networks for Learning Equivariant Representations of Neural Networks
Kofinas, Miltiadis, Knyazev, Boris, Zhang, Yan, Chen, Yunlu, Burghouts, Gertjan J., Gavves, Efstratios, Snoek, Cees G. M., Zhang, David W.
Neural networks that process the parameters of other neural networks find applications in domains as diverse as classifying implicit neural representations, generating neural network weights, and predicting generalization errors. However, existing approaches either overlook the inherent permutation symmetry in the neural network or rely on intricate weight-sharing patterns to achieve equivariance, while ignoring the impact of the network architecture itself. In this work, we propose to represent neural networks as computational graphs of parameters, which allows us to harness powerful graph neural networks and transformers that preserve permutation symmetry. Consequently, our approach enables a single model to learn from neural graphs with diverse architectures. How can we design neural networks that themselves take neural network parameters as input? This would allow us to make inferences about neural networks, such as predicting their generalization error (Unterthiner et al., 2020), generating neural network weights (Schürholt et al., 2022a), and classifying or generating implicit neural representations (Dupont et al., 2022) without having to evaluate them on many different inputs. For simplicity, let us consider a deep neural network with multiple hidden layers. As a naïve approach, we can simply concatenate all flattened weights and biases into one large feature vector, from which we can then make predictions as usual. However, this overlooks an important structure in the parameters: neurons in a layer can be reordered while maintaining exactly the same function (Hecht-Nielsen, 1990). Reordering neurons of a neural network means permuting the preceding and following weight matrices accordingly. Ignoring the permutation symmetry will typically cause this model to make different predictions for different orderings of the neurons in the input neural network, even though they represent exactly the same function. In general, accounting for symmetries in the input data improves the learning efficiency and underpins the field of geometric deep learning (Bronstein et al., 2021). Recent studies (Navon et al., 2023; Zhou et al., 2023a) confirm the effectiveness of equivariant layers for parameter spaces (the space of neural network parameters) with specially designed weight-sharing patterns. These weight-sharing patterns, however, require manual adaptation to each new architectural design. Importantly, a single model can only process neural network parameters for a single fixed architecture.
CrossTune: Black-Box Few-Shot Classification with Label Enhancement
Luo, Danqing, Zhang, Chen, Zhang, Yan, Li, Haizhou
Training or finetuning large-scale language models (LLMs) requires substantial computation resources, motivating recent efforts to explore parameter-efficient adaptation to downstream tasks. One approach is to treat these models as black boxes and use forward passes (Inference APIs) to interact with them. Current research focuses on adapting these black-box models to downstream tasks using gradient-free prompt optimization, but this often involves an expensive process of searching task-specific prompts. Therefore, we are motivated to study black-box language model adaptation without prompt search. Specifically, we introduce a label-enhanced cross-attention network called CrossTune, which models the semantic relatedness between the input text sequence and task-specific label descriptions. Its effectiveness is examined in the context of few-shot text classification. To improve the generalization of CrossTune, we utilize ChatGPT to generate additional training data through in-context learning. A switch mechanism is implemented to exclude low-quality ChatGPT-generated data. Through extensive experiments on seven benchmark text classification datasets, we demonstrate that our proposed approach outperforms the previous state-of-the-art gradient-free black-box tuning method by 5.7% on average. Even without using ChatGPT-augmented data, CrossTune performs better or comparably than previous black-box tuning methods, suggesting the effectiveness of our approach.