Zhang, Xingjian
SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines
Team, M-A-P, Du, Xinrun, Yao, Yifan, Ma, Kaijing, Wang, Bingli, Zheng, Tianyu, Zhu, Kang, Liu, Minghao, Liang, Yiming, Jin, Xiaolong, Wei, Zhenlin, Zheng, Chujie, Deng, Kaixin, Jia, Shian, Jiang, Sichao, Liao, Yiyan, Li, Rui, Li, Qinrui, Li, Sirun, Li, Yizhi, Li, Yunwen, Ma, Dehua, Ni, Yuansheng, Que, Haoran, Wang, Qiyao, Wen, Zhoufutu, Wu, Siwei, Xing, Tianshun, Xu, Ming, Yang, Zhenzhu, Wang, Zekun Moore, Zhou, Junting, Bai, Yuelin, Bu, Xingyuan, Cai, Chenglin, Chen, Liang, Chen, Yifan, Cheng, Chengtuo, Cheng, Tianhao, Ding, Keyi, Huang, Siming, Huang, Yun, Li, Yaoru, Li, Yizhe, Li, Zhaoqun, Liang, Tianhao, Lin, Chengdong, Lin, Hongquan, Ma, Yinghao, Pang, Tianyang, Peng, Zhongyuan, Peng, Zifan, Qi, Qige, Qiu, Shi, Qu, Xingwei, Quan, Shanghaoran, Tan, Yizhou, Wang, Zili, Wang, Chenqing, Wang, Hao, Wang, Yiya, Wang, Yubo, Xu, Jiajun, Yang, Kexin, Yuan, Ruibin, Yue, Yuanhao, Zhan, Tianyang, Zhang, Chun, Zhang, Jinyang, Zhang, Xiyue, Zhang, Xingjian, Zhang, Yue, Zhao, Yongchi, Zheng, Xiangyu, Zhong, Chenghua, Gao, Yang, Li, Zhoujun, Liu, Dayiheng, Liu, Qian, Liu, Tianyu, Ni, Shiwen, Peng, Junran, Qin, Yujia, Su, Wenbo, Wang, Guoyin, Wang, Shi, Yang, Jian, Yang, Min, Cao, Meng, Yue, Xiang, Zhang, Zhaoxiang, Zhou, Wangchunshu, Liu, Jiaheng, Lin, Qunshu, Huang, Wenhao, Zhang, Ge
Large language models (LLMs) have demonstrated remarkable proficiency in mainstream academic disciplines such as mathematics, physics, and computer science. However, human knowledge encompasses over 200 specialized disciplines, far exceeding the scope of existing benchmarks. The capabilities of LLMs in many of these specialized fields-particularly in light industry, agriculture, and service-oriented disciplines-remain inadequately evaluated. To address this gap, we present SuperGPQA, a comprehensive benchmark that evaluates graduate-level knowledge and reasoning capabilities across 285 disciplines. Our benchmark employs a novel Human-LLM collaborative filtering mechanism to eliminate trivial or ambiguous questions through iterative refinement based on both LLM responses and expert feedback. Our experimental results reveal significant room for improvement in the performance of current state-of-the-art LLMs across diverse knowledge domains (e.g., the reasoning-focused model DeepSeek-R1 achieved the highest accuracy of 61.82% on SuperGPQA), highlighting the considerable gap between current model capabilities and artificial general intelligence. Additionally, we present comprehensive insights from our management of a large-scale annotation process, involving over 80 expert annotators and an interactive Human-LLM collaborative system, offering valuable methodological guidance for future research initiatives of comparable scope.
Map2Text: New Content Generation from Low-Dimensional Visualizations
Zhang, Xingjian, Xiong, Ziyang, Liu, Shixuan, Xie, Yutong, Ergen, Tolga, Shim, Dongsub, Xu, Hua, Lee, Honglak, Me, Qiaozhu
Low-dimensional visualizations, or "projection maps" of datasets, are widely used across scientific research and creative industries as effective tools for interpreting large-scale and complex information. These visualizations not only support understanding existing knowledge spaces but are often used implicitly to guide exploration into unknown areas. While powerful methods like TSNE or UMAP can create such visual maps, there is currently no systematic way to leverage them for generating new content. To bridge this gap, we introduce Map2Text, a novel task that translates spatial coordinates within low-dimensional visualizations into new, coherent, and accurately aligned textual content. This allows users to explore and navigate undiscovered information embedded in these spatial layouts interactively and intuitively. To evaluate the performance of Map2Text methods, we propose Atometric, an evaluation metric that provides a granular assessment of logical coherence and alignment of the atomic statements in the generated texts. Experiments conducted across various datasets demonstrate the versatility of Map2Text in generating scientific research hypotheses, crafting synthetic personas, and devising strategies for testing large language models. Our findings highlight the potential of Map2Text to unlock new pathways for interacting with and navigating large-scale textual datasets, offering a novel framework for spatially guided content generation and discovery.
Distributed satellite information networks: Architecture, enabling technologies, and trends
Zhang, Qinyu, Xu, Liang, Huang, Jianhao, Yang, Tao, Jiao, Jian, Wang, Ye, Shi, Yao, Zhang, Chiya, Zhang, Xingjian, Zhang, Ke, Gong, Yupeng, Deng, Na, Zhao, Nan, Gao, Zhen, Han, Shujun, Xu, Xiaodong, You, Li, Wang, Dongming, Jiang, Shan, Zhao, Dixian, Zhang, Nan, Hu, Liujun, He, Xiongwen, Li, Yonghui, Gao, Xiqi, You, Xiaohu
Driven by the vision of ubiquitous connectivity and wireless intelligence, the evolution of ultra-dense constellation-based satellite-integrated Internet is underway, now taking preliminary shape. Nevertheless, the entrenched institutional silos and limited, nonrenewable heterogeneous network resources leave current satellite systems struggling to accommodate the escalating demands of next-generation intelligent applications. In this context, the distributed satellite information networks (DSIN), exemplified by the cohesive clustered satellites system, have emerged as an innovative architecture, bridging information gaps across diverse satellite systems, such as communication, navigation, and remote sensing, and establishing a unified, open information network paradigm to support resilient space information services. This survey first provides a profound discussion about innovative network architectures of DSIN, encompassing distributed regenerative satellite network architecture, distributed satellite computing network architecture, and reconfigurable satellite formation flying, to enable flexible and scalable communication, computing and control. The DSIN faces challenges from network heterogeneity, unpredictable channel dynamics, sparse resources, and decentralized collaboration frameworks. To address these issues, a series of enabling technologies is identified, including channel modeling and estimation, cloud-native distributed MIMO cooperation, grant-free massive access, network routing, and the proper combination of all these diversity techniques. Furthermore, to heighten the overall resource efficiency, the cross-layer optimization techniques are further developed to meet upper-layer deterministic, adaptive and secure information services requirements. In addition, emerging research directions and new opportunities are highlighted on the way to achieving the DSIN vision.
Bench-CoE: a Framework for Collaboration of Experts from Benchmark
Wang, Yuanshuai, Zhang, Xingjian, Zhao, Jinkun, Wen, Siwei, Feng, Peilin, Liao, Shuhao, Huang, Lei, Wu, Wenjun
Large Language Models (LLMs) are key technologies driving intelligent systems to handle multiple tasks. To meet the demands of various tasks, an increasing number of LLMs-driven experts with diverse capabilities have been developed, accompanied by corresponding benchmarks to evaluate their performance. This paper proposes the Bench-CoE framework, which enables Collaboration of Experts (CoE) by effectively leveraging benchmark evaluations to achieve optimal performance across various tasks. Bench-CoE includes a set of expert models, a router for assigning tasks to corresponding experts, and a benchmark dataset for training the router. Moreover, we formulate Query-Level and Subject-Level approaches based on our framework, and analyze the merits and drawbacks of these two approaches. Finally, we conduct a series of experiments with vary data distributions on both language and multimodal tasks to validate that our proposed Bench-CoE outperforms any single model in terms of overall performance. We hope this method serves as a baseline for further research in this area. The code is available at \url{https://github.com/ZhangXJ199/Bench-CoE}.
On the physics of nested Markov models: a generalized probabilistic theory perspective
Zhang, Xingjian, Wang, Yuhao
Determining potential probability distributions with a given causal graph is vital for causality studies. To bypass the difficulty in characterizing latent variables in a Bayesian network, the nested Markov model provides an elegant algebraic approach by listing exactly all the equality constraints on the observed variables. However, this algebraically motivated causal model comprises distributions outside Bayesian networks, and its physical interpretation remains vague. In this work, we inspect the nested Markov model through the lens of generalized probabilistic theory, an axiomatic framework to describe general physical theories. We prove that all the equality constraints defining the nested Markov model hold valid theory-independently. Yet, we show this model generally contains distributions not implementable even within such relaxed physical theories subjected to merely the relativity principles and mild probabilistic rules. To interpret the origin of such a gap, we establish a new causal model that defines valid distributions as projected from a high-dimensional Bell-type causal structure. The new model unveils inequality constraints induced by relativity principles, or equivalently high-dimensional conditional independences, which are absent in the nested Markov model. Nevertheless, we also notice that the restrictions on states and measurements introduced by the generalized probabilistic theory framework can pose additional inequality constraints beyond the new causal model. As a by-product, we discover a new causal structure exhibiting strict gaps between the distribution sets of a Bayesian network, generalized probabilistic theories, and the nested Markov model. We anticipate our results will enlighten further explorations on the unification of algebraic and physical perspectives of causality.
Minder: Faulty Machine Detection for Large-scale Distributed Model Training
Deng, Yangtao, Shi, Xiang, Jiang, Zhuo, Zhang, Xingjian, Zhang, Lei, Zhang, Zhang, Li, Bo, Song, Zuquan, Zhu, Hang, Liu, Gaohong, Li, Fuliang, Wang, Shuguang, Lin, Haibin, Ye, Jianxi, Yu, Minlan
Large-scale distributed model training requires simultaneous training on up to thousands of machines. Faulty machine detection is critical when an unexpected fault occurs in a machine. From our experience, a training task can encounter two faults per day on average, possibly leading to a halt for hours. To address the drawbacks of the time-consuming and labor-intensive manual scrutiny, we propose Minder, an automatic faulty machine detector for distributed training tasks. The key idea of Minder is to automatically and efficiently detect faulty distinctive monitoring metric patterns, which could last for a period before the entire training task comes to a halt. Minder has been deployed in our production environment for over one year, monitoring daily distributed training tasks where each involves up to thousands of machines. In our real-world fault detection scenarios, Minder can accurately and efficiently react to faults within 3.6 seconds on average, with a precision of 0.904 and F1-score of 0.893.
$\texttt{dattri}$: A Library for Efficient Data Attribution
Deng, Junwei, Li, Ting-Wei, Zhang, Shiyuan, Liu, Shixuan, Pan, Yijun, Huang, Hao, Wang, Xinhe, Hu, Pingbang, Zhang, Xingjian, Ma, Jiaqi W.
Data attribution methods aim to quantify the influence of individual training samples on the prediction of artificial intelligence (AI) models. As training data plays an increasingly crucial role in the modern development of large-scale AI models, data attribution has found broad applications in improving AI performance and safety. However, despite a surge of new data attribution methods being developed recently, there lacks a comprehensive library that facilitates the development, benchmarking, and deployment of different data attribution methods. In this work, we introduce $\texttt{dattri}$, an open-source data attribution library that addresses the above needs. Specifically, $\texttt{dattri}$ highlights three novel design features. Firstly, $\texttt{dattri}$ proposes a unified and easy-to-use API, allowing users to integrate different data attribution methods into their PyTorch-based machine learning pipeline with a few lines of code changed. Secondly, $\texttt{dattri}$ modularizes low-level utility functions that are commonly used in data attribution methods, such as Hessian-vector product, inverse-Hessian-vector product or random projection, making it easier for researchers to develop new data attribution methods. Thirdly, $\texttt{dattri}$ provides a comprehensive benchmark framework with pre-trained models and ground truth annotations for a variety of benchmark settings, including generative AI settings. We have implemented a variety of state-of-the-art efficient data attribution methods that can be applied to large-scale neural network models, and will continuously update the library in the future. Using the developed $\texttt{dattri}$ library, we are able to perform a comprehensive and fair benchmark analysis across a wide range of data attribution methods. The source code of $\texttt{dattri}$ is available at https://github.com/TRAIS-Lab/dattri.
MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows
Zhang, Xingjian, Xie, Yutong, Huang, Jin, Ma, Jinge, Pan, Zhaoying, Liu, Qijia, Xiong, Ziyang, Ergen, Tolga, Shim, Dongsub, Lee, Honglak, Mei, Qiaozhu
Scientific innovation relies on detailed workflows, which include critical steps such as analyzing literature, generating ideas, validating these ideas, interpreting results, and inspiring follow-up research. However, scientific publications that document these workflows are extensive and unstructured. This makes it difficult for both human researchers and AI systems to effectively navigate and explore the space of scientific innovation. To address this issue, we introduce MASSW, a comprehensive text dataset on Multi-Aspect Summarization of Scientific Workflows. MASSW includes more than 152,000 peer-reviewed publications from 17 leading computer science conferences spanning the past 50 years. Using Large Language Models (LLMs), we automatically extract five core aspects from these publications -- context, key idea, method, outcome, and projected impact -- which correspond to five key steps in the research workflow. These structured summaries facilitate a variety of downstream tasks and analyses. The quality of the LLM-extracted summaries is validated by comparing them with human annotations. We demonstrate the utility of MASSW through multiple novel machine-learning tasks that can be benchmarked using this new dataset, which make various types of predictions and recommendations along the scientific workflow. MASSW holds significant potential for researchers to create and benchmark new AI methods for optimizing scientific workflows and fostering scientific innovation in the field. Our dataset is openly available at \url{https://github.com/xingjian-zhang/massw}.
TinyLLaVA Factory: A Modularized Codebase for Small-scale Large Multimodal Models
Jia, Junlong, Hu, Ying, Weng, Xi, Shi, Yiming, Li, Miao, Zhang, Xingjian, Zhou, Baichuan, Liu, Ziyu, Luo, Jie, Huang, Lei, Wu, Ji
We present TinyLLaVA Factory, an open-source modular codebase for small-scale large multimodal models (LMMs) with a focus on simplicity of code implementations, extensibility of new features, and reproducibility of training results. Following the design philosophy of the factory pattern in software engineering, TinyLLaVA Factory modularizes the entire system into interchangeable components, with each component integrating a suite of cutting-edge models and methods, meanwhile leaving room for extensions to more features. In addition to allowing users to customize their own LMMs, TinyLLaVA Factory provides popular training recipes to let users pretrain and finetune their models with less coding effort. Empirical experiments validate the effectiveness of our codebase. The goal of TinyLLaVA Factory is to assist researchers and practitioners in exploring the wide landscape of designing and training small-scale LMMs with affordable computational resources.
Can LLMs Effectively Leverage Graph Structural Information: When and Why
Huang, Jin, Zhang, Xingjian, Mei, Qiaozhu, Ma, Jiaqi
This paper studies Large Language Models (LLMs) augmented with structured data--particularly graphs--a crucial data modality that remains underexplored in the LLM literature. We aim to understand when and why the incorporation of structural information inherent in graph data can improve the prediction performance of LLMs on node classification tasks with textual features. To address the ``when'' question, we examine a variety of prompting methods for encoding structural information, in settings where textual node features are either rich or scarce. For the ``why'' questions, we probe into two potential contributing factors to the LLM performance: data leakage and homophily. Our exploration of these questions reveals that (i) LLMs can benefit from structural information, especially when textual node features are scarce; (ii) there is no substantial evidence indicating that the performance of LLMs is significantly attributed to data leakage; and (iii) the performance of LLMs on a target node is strongly positively related to the local homophily ratio of the node\footnote{Codes and datasets are at: \url{https://github.com/TRAIS-Lab/LLM-Structured-Data}}.